设Σ为光滑曲面,函数f(x,y,z)在Σ上有定义,把Σ任意地分成n个小曲面Si,其面积设为ΔSi,在每个小曲面Si上任取一点(Xi,Yi,Zi) 作乘积f(Xi,Yi,Zi)ΔSi,并求和Σf(Xi,Yi,Zi)ΔSi,记λ=max(ΔSi的直径) ,若Σf(Xi,Yi,Zi)ΔSi当λ→0时的极限存在,且极限值与Σ的分法及取点(Xi,Yi,Zi)无关,则称极限值为f(x,y,z)在Σ上对面积的曲面积分,也叫做第一类曲面积分。即为∫∫f(x,y,z)dS;其中f(x,y,z)叫做被积函数,Σ叫做积分
曲面,dS叫做面积微元。
对面积的曲面积分和对坐标轴的曲面积分是可以转化的;两类
曲面积分的区别在于形式上积分元素的不同,第一类曲面积分的积分元素是面积元素dS,例如:在积分曲面Σ上的对面积的曲面积分:
设Σ的
方程为,Σ在xOy平面上的投影区域D是有界闭区域,在D上具有连续的
偏导数,于是:
积分曲面Σ上任意一点的法向量为(〥z/〥x,〥z/〥y,-1)(注:〥表示求偏导数,〥z/〥x表示z对x偏导数,是整体符号,下同),xOy平面的法向量取(0,0,1);
所以,Σ上的点为(x,y,z(x,y))则∫∫f(x,y,z)dS存在,且在积分
曲面Σ上的曲面积分有:
而对于这种类型的曲面积分,积分曲面可能需要同时向三个坐标平面 xOy,xOz,yOz投影,投影的方式和上面的方法一样。实际上如果面积元素dS与三个坐标平面的夹角分别为α,β,γ,则有;
在向各个坐标平面投影的时候需要注意dS的有
向性,即夹角的大小,在夹角大于π/2的时候,其余弦值是负的。