一致连续性表示,在f(x)的连续区间的任何部分,只要自变量的两个数值接近到一定程度(ζ),就可使对应的函数值达到所指定的接近程度(ε),且这个接近程度(ε)不随自变量x的改变而改变。
若定义在区间A(注意区间A可以是闭区间,亦可以是开区间甚至是无穷区间)上的
连续函数,如果对于任意给定的
正数,存在一个只与有关与x无关的
实数,使得对任意A上的,只要满足,就有,则称f(x)在区间A上是一致连续的。
函数f(x)在闭区间上一致连续的
充分必要条件是其在上连续;函数在开区间上(或无穷区间上)一致连续的充分必要条件是其在开区间(或无穷区间)上连续且以及存在极限。