热稳定性
化学术语之一
热稳定性 thermal stability试样在特定加热条件下,加热期间内一定时间间隔的粘度和其它现象的变化。
热稳定性 简介
热稳定性 thermal stability
试样在特定加热条件下,加热期间内一定 时间间隔的粘度和其它现象的变化。
建筑学方面指:在周期性热作用下,围护结构或房间抵抗温度波动的能力。
电器的热稳定性是指电器在指定的电路中,在一定时间内能承受短路电流(或规定的等值电流)的热作用而不发生热损坏的能力。
化学方面,物质的热稳定性与元素周期表有关,在同周期中,氢化物的热稳定性从左到右是越来越稳定,在同主族中的氢化物的热稳定性则是从下到上越来越稳定,也就是非金属性越强的元素,其氢化物的热稳定性越稳定。
物质热稳定性的比较规律
1.单质的热稳定性与键能的相关规律
一般说来,单质的热稳定性与构成单质的化学键牢固程度正相关;而化学键牢固程度又与键能正相关。
2.气态氢化物的热稳定性:元素的非金属性越强,形成的气态氢化物就越稳定。同主族的非金属元素,从上到下,随核电荷数的增加,非金属性渐弱,气态氢化物的稳定性渐弱;同周期的非金属元素,从左到右,随核电荷数的增加,非金属性渐强,气态氢化物的稳定性渐强。
3.氢氧化物的热稳定性:金属性越强,碱的热稳定性越强(碱性越强,热稳定性越强)。
4.含氧酸的热稳定性:绝大多数含氧酸的热稳定性差,受热脱水生成对应的酸酐。一般地
①常温下酸酐是稳定的气态氧化物,则对应的含氧酸往往极不稳定,常温下可发生分解;
②常温下酸酐是稳定的固态氧化物,则对应的含氧酸较稳定,在加热条件下才能分解。
③某些含氧酸易受热分解并发生 氧化还原反应,得不到对应的酸酐。
5.含氧酸盐的热稳定性:
①酸不稳定,其对应的盐也不稳定;酸较稳定,其对应的盐也较稳定,例如硝酸盐比较稳定
②同一种酸的盐,热稳定性 正盐\u003e 酸式盐\u003e酸。
③同一酸根的盐的热稳定性顺序是碱金属盐\u003e过渡金属盐\u003e铵盐
④同一成酸元素,其高价含氧酸比低价含氧酸稳定,其相应含氧酸盐的稳定性顺序也是如此。
物质热稳定性的热分析方法
1 仪器
1.1 仪器
差热分析仪(DTA)或 差示扫描量热计(DSC):程序升温速率在2——30℃/min范围内,控温精度为土2℃,温差或功率差的大小在记录仪上能达到40%——95%的满刻度偏离。
1.2 样品容器
埚;铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。
1.3 气源
空气、氮气等,纯度应达到工业用 气体纯度。
1.4 冷却装置
冷却装置的冷却温度应能达到-50℃。
1.5 参比物
在试验温度范围内不发生变。典型的参比物有煅烧的氧化铝、玻璃珠、硅油或空容器等。在干燥器中储存。
2 试样
2.1 取样
对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分法取样。
2.2 试样量
试样量由被测试样的数量、需要稀释的程度、Y轴量程、焓变大小以及升温速率等因素来决定,一般为1——5mg,最大用量不超过50mg。如果试样有突然释放大量潜能的可能性,应适当减少试样量。
3 试验步骤
3.1 仪器温度校准按附录A进行,校准温度精度应在土2℃范围内。
3.2 将试祥和参比物分别放入各自的样品容器中,并使之与样品容器有良好的热接触(对于液体试样,最好加入试样 重量20%的惰性材料,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触。
3.3 接通气源,并将气体 流量控制在10——50mL/min的范围内(如果在静止状态下进行测量,则不需要通气)。
3.4 根据所用试样的性质来确定试验温度范围。
3.5 按4.1条的要求调整y轴量程。
3.6 启动升温控制器,控制升温速率在10——30℃/min的范围内,记录温差ΔT(或功率差dH/dt与温度T的关系 曲线,即DTA曲线(或DSC曲线)(如图1a、1b)。
3.7 如果以10——30℃/min的升温速率进行测量而不能将峰分辨开时(如图2a、2b),可以采用低于10℃/min的升温速率。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
热稳定性 简介
物质热稳定性的比较规律
物质热稳定性的热分析方法
参考资料