加权平均,
统计学术语,是利用过去若干个按照时间顺序排列起来的同一变量的观测值并以时间顺序变量出现的次数为权数,计算出观测值的加权算术
平均数。
“统计初步”这部分内容中,
平均数是一个非常重要而又有广泛用途的概念,在日常生活中,我们经常会听到这样一些名词:平均气温、平均降雨量、平均产量、人均年收入等;而平均分数、平均年龄、平均身高等名词更为同学们所熟悉。一般来说,平均数反映了一组数据的一般水平,利用平均数,可以从横向和纵向两个方面对事物进行分析比较,从而得出结论。例如,要想比较同一年级的两个班同学学习成绩,如果用每个班的总成绩进行比较,会由于班级人数不同,而使比较失去真正意义。但是如果用平均分数去比较,就可以把各班的平均水平呈现出来。从纵向的角度来看,可以对同一个事物在不同的时间内的情况利用
平均数反映出来,例如,通过两个不同时间人均年收入来比较人们生活水平、经济发展等状况.
当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化。例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为:
这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的
平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10.
在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义.
在评估某个同学一学期的学生成绩时,一般不只看他期末的一次成绩,而是将平时测验、期中考试等成绩综合起来考虑,比如说,一同学两次单元测验的成绩分别为88,90,期中的考试成绩为92,而期末的考试成绩为85,如果简单地计算这四个成绩的
平均数,即将平时测验与期中、期末考试成绩同等看待,就忽视了期末考试的重要性。鉴于这种考虑,我们往往将这四个成绩分配以不同的权重。
此外在一些体育比赛项目中,也要用到权重的思想。比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不同,尽管完成各自动作的质量相同,但得分也是不相同的,难度系数大的运动员得分应该高些,难度系数实际上起着权重的作用。