样本
统计学概念
样本外语(specimen)是观测或调查的一部分个体,总体是研究对象的全部。总体中抽取的所要考查的元素总称,样本中个体的多少叫样本容量。一般的,样本的内容是带着单位的,例如:调查某中学300名中学生的视力情况中,样本是300名中学生的视力情况,而样本容量则为300。
选取样本的过程叫做抽样,根据不同的对象,在抽样方法也有所不同。
总体与样本
如作水质检验时从井水或河水中采的水样,临床化验中从病人身上采的血液或其它活体组织标本,是样本;而整个一口井或一条河的某一段所有的水,某病人全身所有的血液或某个组织器官,则是总体。这类总体是具体存在的,但另有些总体却是假想的,只是理论上存在的一个范围。例如试验某一治疗流感新药的疗效,最初接受治疗的一批流感患者,不论数量多少,都只是一个样本。若该药疗效得到肯定,从而加以推广,那么此后凡在相同条件下接受该药治疗的所有流感患者,都属于这个总体。可是当初试用时,这个总体还并不存在,是假想的。
总体包含的观察单位通常是大量的甚至是无限的,在实际工作中,一般不可能或不必要对每个观察单位逐一进行研究。我们只能从中抽取一部分观察单位加以实际观察或调查研究,根据对这一部分观察单位的观察研究结果,再去推论和估计总体情况。如上述某新药治疗流感例子,试验治疗的只是少数有限的病人,而结论却要推广到全体,得出一个该药对所有流感患者之疗效的规律性的认识。所以说,观察样本的目的在于推论总体,这就是样本与总体的辩证关系。
样本容量
样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。
确定样本容量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
抽样
又称取样。从欲研究的全部样品中抽取一部分样品单位。其基本要求是要保证所抽取的样品单位对全部样品具有充分的代表性。抽样的目的是从被抽取样品单位的分析、研究结果来估计和推断全部样品特性,是科学实验、质量检验、社会调查普遍采用的一种经济有效的工作和研究方法。
抽样设计在进行过程中要遵循四项原则,分别是:
1、目的性;
2、可测性;
3、可行性;
4、经济型原则。
抽样方法
简单随机抽样
一般的,设一个总体个数为N,如果通过逐个抽取的方法抽取一个样本,且每次抽取时,每个个体被抽到的概率相等,这样的抽样方法为简单随机抽样。适用于总体个数较少的。
系统抽样
当总体的个数比较多的时候,首先把总体分成均衡的几部分,然后按照预先定的规则,从每一个部分中抽取一些个体,得到所需要的样本,这样的抽样方法叫做系统抽样。
分层抽样
抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层中独立抽取一定数量的个体,得到所需样本,这样的抽样方法为分层抽样。适用于总体由差异明显的几部分组成。
整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
多段抽样
多段随机抽样,就是把从调查总体中抽取样本的过程,分成两个或两个以上阶段进行的抽样方法。
参考资料
什么是样本?.福建省人民政府.2023-12-27
目录
概述
总体与样本
样本容量
抽样
抽样方法
简单随机抽样
系统抽样
分层抽样
整群抽样
多段抽样
参考资料