固氮作用
固氮作用
将空气中游离态的氮转化为含氮化合物的过程叫氮的固定。生物固氮是固氮微生物的一种特殊的生理功能,已知具固氮作用的微生物约近50个属,包括细菌、放线菌蓝菌门(即蓝藻),它们的生活方式、固氮作用类型有较大区别,但细胞内都具有固氮酶。不同固氮微生物的固氮酶均由铁蛋白和铁蛋白组成。固氮酶必须在厌氧条件下,即在低的氧化还原条件下才能催化反应。
生物固氮
固氮作用过程十分复杂,目前还不完全清楚。各种固氮微生物进行固氮作用的总反应可用以下简式表示:
根据固氮微生物与维管植物的关系,可分为自生固氮菌共生固氮菌以及联合固氮菌。其所进行的固氮作用分别称为自生固氮,共生固氮或联合固氮。
另外,还有大豆等生物,跟也有固氮作用。
自生固氮菌
自生固氮菌(Azotobacteria)是自由生活在土壤或水域中,能独立进行固氮作用的某些细菌。以分子态氮为氮素营养,将其还原为NH3,再合成氨基酸、蛋白质。包括好氧性细菌,如固氮菌属、固氮螺菌属以及少数自养菌兼性厌氧菌,如克雷伯氏菌属厌氧菌,如梭状芽孢杆菌属的一些种。还有光合细菌如红螺菌属绿菌属以及蓝菌门蓝藻),如鱼腥藻属、念珠藻属等。
联合固氮
近年在上述两个类型之间又提出一个中间类型,称为联合固氮。即有的固氮菌生活在某些植物根的粘质鞘套内或皮层细胞间,不形成根瘤,但有较强的专一性,如雀稗固氮菌与点状雀联合,生活在雀稗根的粘质鞘套内,固氮量可达15~93千克/公顷·年。其他如生活在水稻、甘蔗及许多热带牧草的根际的微生物,由于与这些植物根系联合,因而都有很强的固氮作用。
共生固氮菌
共生固氮菌在与植物共生的情况下才能固氮或才能有效地固氮,固氮产物氨可直接为共生体提供氮源。共生固氮效率比自生固氮体系高数十倍。主要有根瘤菌属根瘤菌)的细菌与豆科共生形成的根瘤共生体,弗氏菌属(Frankia)与非豆科植物共生形成的根瘤共生体;某些蓝菌门与植物共生形成的共生体,如念珠藻鱼腥藻属与裸子植物苏铁共生形成苏铁共生体,红萍与鱼腥藻形成的红萍共生体等。在实验条件下培养自生固氮菌培养基中只需加入碳源(如蔗糖、葡萄糖)和少量无机盐,不需加入氮源,固氮菌可直接利用空气中的氮(N2)作为氮素营养;如培养根瘤菌,则需加入氮素营养,因为根瘤菌等共生固氮菌,只有与相应的植物共生时,才能利用分子态氮(N2)进行固氮作用。
电离固氮
即采用人工或自然的方式,使空气中的氮气转化为氮化物电离作用和大自然中的闪电能使空气中的氮气和氧气产生化合作用,形成 一氧化氮,一氧化氮极其不稳定,会瞬间被氧化成二氧化氮。二氧化氮溶于水形成稀薄的硝酸,而硝酸会与土壤里的元素形成氮化物,从而被植物吸收。
非生物固氮
工业固氮
19世纪末化肥工业的出现和发展推动了农业生产的发展。随着世界人口增长对粮食的需求也日趋增大,再加上工业发展和军事上的迫切需要,使人工固氮在本世纪初成了世界性的重大研究课题。尽管不少化学家耗费了相当大的精力,但仍未掌握一种较理想的人工固氮方法。
1905年德国物理化学家、合成氨的发明者弗里茨·哈伯(Fritz Haber)赴美国考察,回国后也采用高压放电固氮,实验历时一年效果不尽人意。后来从法国化学家用高温、高压合成氨发生爆炸的消息中获得启示,他也毅然采用该法进行试验,表现了他的果断和勇气。在历经无数次失败后, 1909年7月2日哈伯在实验室采用600℃、 200个大气压和用金属铁作催化剂的条件下,人工固氮成功,平衡后氨的浓度达到6%,首次取得突破,当年德国巴登苯胺纯碱公司总经理、工业化学家博施(Carl 博世公司),参观了哈伯的实验室,确认他的方法成功、有效,决定扩大进行中间试验。此后弗里茨·哈伯提出了原料气循环使用的合理建议;博施也解决了从水煤气中获得氢气的问题。1910年建成新工艺流程的中试工厂。该公司的研究人员在化学家米塔斯(Mitas)的主持下,用2500种不同的催化剂经上万次试验,终于研制成功含有钾、铝氧化物助催化剂的价廉易得的高效铁催化剂。1911年巴登公司在德国奥堡建成世界第一座日产汽车公司30 吨合成氨的工厂。人称这种合成氨方法为“哈伯-博施法”,这是具有世界意义的人工固氮技术的重大成就。是化工生产实现高温、高压、催化反应的第一个里程碑。合成氨的原料来自空气、煤和水,因此是最经济的人工固氮法,从而结束了人类完全依靠天然氮肥的历史,给世界农业发展带来了福音;为工业生产、军工需要的大量硝酸、炸药解决了原料问题)在化工生产上推动了高温、高压、催化剂等一系列的技术进步。合成氨的成功也为德国节省了巨额经费支出,弗里茨·哈伯、博施也一举成名。
应用
作为合成氨工业的奠基人,哈伯也深受当时德国统治者的青睐,他数次被德皇威廉二世召见,委以重任。1911年他担任了威廉皇家物理化学和电化学研究所所长兼柏林大学教授。1914年第一次世界大战爆发时,哈伯参与设计的多家合成氨工厂已在德国建成。当时唯有德国掌握垄断了合成氨技术,这也促成了德皇威廉二世的开战决心。威廉认为只要能源源不断地生产出氨和硝酸,德国的粮食和炸药供应就有保证:再全力阻扰敌国获得智利硝石就可以制限对方,德国就能获胜。外国首脑和军事专家也曾预测:由于含氨化合物的短缺,大战将在一年之内结束。不料德国合成氨的成功使其含氮化合物自给有余,从而延长了一次大战的时间,弗里茨·哈伯的成功也给平民百姓带来了灾难、战争和死亡,这大概是他料想不到的。
有关发展
热带雨林之外生长最快的树木是毛白杨。这种树高而细长,在不到10年的时间里就可以长到30米高,即便是生长在它们似乎并不适宜的环境里,如焚烧的土地以及多沙的河岸。
Sharon Doty说,这样的生长速度得益于其叶片和其他组织中的微生物。当白杨的叶子细胞忙着把日光转化为能量时,叶子细胞中的细菌会把空气中的氮转化成一种维持树木快速生长所需要的氮。
这是个有些激进的观点,因为固氮作用普遍认为主要发生在豆科与其他少数植物根部含有大量细菌的根瘤上。“我们完全是在挑战教条主义。”美国华盛顿大学微生物学家Doty说。
在5月初的第五届约塞米蒂国家公园(位于加利福尼亚州中部)共生研讨会上,Doty对她的观点进行了佐证。她报道了毛白杨从某种微生物中获取氮的首个直接例证,她的观点得到了加利福尼亚大学环境微生物学家Carolin Frank的支持,Frank研究的是不同种类的树木在贫瘠土地上如何生存,她在报告中表示,固氮作用还可能出现在柔枝松的针叶中,这种松树主要生长在美国西部多石、海拔较高的坡地上。
Frank和Doty推测,具有固氮作用的叶子细菌可能十分广泛,如果把它们转移到农作物上,可能有助于提高贫瘠土壤的作物产量。Doty发现,一些庄稼在接种过这种微生物后生长得更好。她在约塞米蒂年会上举了一个例子:大米。尽管其他植物学家不太相信这种观点,但是同样对此表现出强烈兴趣。“如果大量(树木)物种中都有一种尚未识别的氮固定生物,那会是个大发现。”加利福尼亚大学戴维斯分校植物和微生物学家Douglas Cook说。
从上世纪90年代起,固氮作用仅在富含微生物的植物根瘤上存在的观点受到了挑战,彼时研究人员在没有根瘤的甘蔗中发现了固氮作用。自那时起,研究人员不时有成果指出,植物组织内生长着一种叫作内生真菌的细菌,可以为宿主提供生长所需的氮。但是Cook认为:“尚未作过恰当的研究,因此这样的观点并非举足轻重。”
他和一些研究人员主张,这一过程中非常关键的固氮酶刺激反应过于敏感,不能让氧气在叶子内工作。而且即便有微生物在转化空气中的氮,“也并不能意味着,它们在为宿主提供益处”。斯坦福大学研究氮储存的专家Sharon Long说。
Doty试图回答所有的反对意见。她在约15年前就开始怀疑固氮作用可能存在于根瘤之外,当时她发现毛白杨细胞培养皿中充满了和已知固氮微生物株相关的细菌,她把细菌放在没有氮气的媒介中,然而一些微生物却存活下来,它们很明显从空气中获得了氮。
此后,她记录了数十种来自白杨的菌株促进白杨之外的其他植物生长的例证,包括黑麦、草坪草、玉米、杨木、番茄以及此次的大米等。她的温室气体研究表明,在一种含有白杨内生菌的发酵液中浸泡了4小时的稻秧,最终整个植物体遍及这种微生物,而且比没有浸泡过该发酵液的稻秧长得更高、产量更多,而且会产生更多分蘖
如果Doty是正确的,一个剂量的这种生物菌可能确实会对农民有益。“氮是个巨大的约束因子,对非洲农业尤其如此。”植物生物学家、西雅图比尔及梅琳达·盖茨基金会的一名项目官员Katherine Kahn说。目前确实存在补偿措施有限的问题:花费不仅昂贵,而且会污染环境,向土壤中加入固氮细菌也不能很好见效,而且给农作物植入需要形成根瘤的基因或是让它们自身进行固氮都是非常遥远的梦想。
一些研究人员怀疑,Doty分离出的一些叶子寄生细菌会产生促进生长的植物荷尔蒙。但因为Doty是在缺乏氮的人工土壤中进行的实验,她认为,由这种细菌提供的氮一定在促进植物生长。在会议上,Doty原来的技术员Andrew Sher则说明了自己认为最强有力的证据。Sher把来自野生毛白杨的切片放入烧杯中,并让它们接触比空气中氮浓度更高的氮。随后,植物体内呈现出同样的同位素,这表明细菌已经捕获到氮并把它转化为可用的营养,Doty说。
尽管如此,一些研究人员仍对这一观点持谨慎态度。“现在科学家的看法正在逐渐发生改变,不是从怀疑变为信任,而是从怀疑变为谨慎的提问。”田纳西州橡树岭国家实验室植物遗传学家Gerald Tuska说。Tuskan和同事已经从白杨中分离出约3000个微生物,其中许多配有固氮酶。其中一些微生物被生物膜隔离在氧限制隔间中,在那里固氮酶甚至在叶子富养环境中也能发挥作用。
树木固氮作用的观点在一步步逐渐确立,Frank说:“我觉得我们在逐渐改变人们的观点,也包括我们自己的观点
参考资料
目录
概述
生物固氮
自生固氮菌
联合固氮
共生固氮菌
电离固氮
非生物固氮
工业固氮
应用
有关发展
参考资料