《量化投资—策略与技术 》是2012 年1月
电子工业出版社出版的图书,作者是丁鹏。该书主要介绍了量化投资策略。
内容简介
《量化投资—策略与技术》是国内第一本有关量化投资策略的著作,首先介绍了量化投资大师西蒙斯的传奇故事(连续20年,每年赚60%);然后用60多个案例介绍了量化投资的各个方面的内容,主要分为策略篇与理论篇两部分,策略篇主要包括:量化选股、量化择时、股指期货
套利、商品期货套利、统计套利、
期权套利、算法交易和资产配置等。理论篇主要包括:
人工智能、
数据挖掘、小波分析、支持
向量机、分形理论、
随机过程及it技术等;最后介绍了作者开发的d-alpha量化对冲交易系统,该系统全球市场验证显示具有长期稳健的收益率。
《量化投资—策略与技术》适合基金经理、证券分析师、普通散户及有志于从事金融投资的各界人士阅读。
作者简介
丁 鹏
中国量化投资研究的先行者,他开发的D-Alpha量化对冲交易系统,实战中获得持续稳健的收益率。
毕业于上海交通大学
计算机系获得工学博士学位,是国际知名的
人工智能研究员,美国电子电气工程师学会(IEEE)、美国金融学会(AFA)会员。
《CCTV证券资讯》特邀嘉宾
《网易财经》特邀嘉宾
2001年底进入上海交通大学工作,在金融工程、金融数学领域深入研究多年,在国际顶级刊物和会议上发表过十余篇学术文章,获得国家发明专利5项。
2008年进入
东方花旗证券有限公司工作,从事量化投资研究,包括量化选股、量化择时等研究。
作品目录
《量化投资—策略与技术》
策略篇
第 1章 量化投资概念
1.1 什么是量化投资 2
1.1.1 量化投资定义 2
1.1.2 量化投资理解误区 3
1.2 量化投资与传统投资比较 6
1.2.1 传统投资策略的缺点 6
1.2.2 量化投资策略的优势 7
1.2.3 量化投资与传统投资策略的比较 8
1.3 量化投资历史 10
1.3.1 量化投资理论发展 10
1.3.2 海外量化基金的发展 12
1.3.3 量化投资在中国 15
1.4 量化投资主要内容 16
1.5 量化投资主要方法 21
.第 2章 量化选股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 实证案例:多因子选股模型 30
2.2 风格轮动 35
2.2.1 基本概念 35
2.2.2 盈利预期生命周期模型 38
2.2.3 策略模型 40
2.2.5 实证案例:大小盘风格 44
2.3 行业轮动 47
2.3.1 基本概念 47
2.3.2 m2行业轮动策略 50
2.3.3 市场情绪轮动策略 52
2.4 资金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 实证案例:资金流选股策略 60
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 实证案例:动量选股策略和反转选股策略 70
2.6 一致预期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 实证案例:一致预期模型案例 78
2.7 趋势追踪 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 实证案例:趋势追踪选股模型 92
2.8 筹码选股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 实证案例:筹码选股模型 99
2.9 业绩评价 104
2.9.1 收益率指标 104
2.9.2 风险度指标 105
第 3章 量化择时 111
3.1 趋势追踪 112
3.1.1 基本概念 112
3.1.2 传统趋势指标 113
3.1.3 自适应均线 121
3.2 市场情绪 125
3.2.1 基本概念 126
3.2.2 情绪指数 128
3.2.3 实证案例:情绪指标择时策略 129
3.3 有效资金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 实证案例:有效资金择时模型 137
3.4 牛熊线 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 实证案例:牛熊线择时模型 144
3.5 husrt指数 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 实证案例 149
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 实证案例:svm择时模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 实证案例:swarch模型 164
3.8 异常指标 168
3.8.1 市场噪声 168
3.8.2 行业集中度 170
3.8.3 兴登堡凶兆 172
4.1 基本概念 181
4.1.1 套利介绍 181
4.1.2 套利策略 183
4.2 期现套利 185
4.2.1 定价模型 185
4.2.2 现货指数复制 186
4.2.3 正向套利案例 190
4.2.4 结算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 无套利区间 196
4.3.3 跨期套利触发和终止 197
4.3.5 主要套利机会 200
4.4 冲击成本 203
4.4.1 主要指标 204
4.4.2 实证案例:冲击成本 205
4.5 保证金管理 208
4.5.1 var方法 208
4.5.2 var计算方法 209
4.5.3 实证案例 211
第 5章 商品期货套利 214
5.1 基本概念 215
5.1.1 套利的条件 216
5.1.2 套利基本模式 217
5.1.4 常见套利组合 221
5.2 期现套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值税风险 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 实证案例:
聚氯乙稀跨期套利策略 233
5.4 跨市场套利 234
5.4.1 套利策略 234
5.4.2 实证案例:伦铜—沪铜跨市场套利 235
5.5.1 套利策略 237
5.5.2 实证案例 238
5.6 非常状态处理 240
第 6章 统计套利 242
6.1 基本概念 243
6.1.1 统计套利定义 243
6.1.2 配对交易 244
6.2 配对交易 247
6.2.1 协整策略 247
6.2.2 主成分策略 254
6.2.3 绩效评估 256
6.2.4 实证案例:配对交易 258
6.3 股指套利 261
6.3.2 国家指数套利 263
6.3.3 洲域指数套利 264
6.3.4 全球指数套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可转债—融券套利 268
6.4.3 股指期货—融券套利 269
6.4.4 封闭式基金—融券套利 271
6.5 外汇套利 272
6.5.1 利差套利 273
6.5.2 货币对套利 275
7.1 基本概念 278
7.1.1 期权介绍 278
7.1.2 期权交易 279
7.1.3 牛熊证 280
7.2.1 股票—股票期权套利 283
7.2.2 股票—指数期权套利 284
7.3 转换套利 285
7.3.1 转换套利 285
7.3.2 反向转换套利 287
7.4 跨式套利 288
7.4.1 买入跨式套利 289
7.4.2 卖出跨式套利 291
7.5 宽跨式套利 293
7.5.1 买入宽跨式套利 293
7.5.2 卖出宽跨式套利 294
7.6 蝶式套利 296
7.6.2 卖出蝶式套利 298
7.7 飞鹰式套利 299
7.7.1 买入飞鹰式套利 300
7.7.2 卖出飞鹰式套利 301
第 8章 算法交易 304
8.1 基本概念 305
8.1.1 算法交易定义 305
8.1.2 算法交易分类 306
8.1.3 算法交易设计 308
8.2 被动交易算法 309
8.2.1 冲击成本 310
8.2.2 等待风险 312
8.2.3 常用被动型交易策略 314
8.3 vwap算法 316
8.3.1 标准vwap算法 316
8.3.2 改进型vwap算法 319
第 9章 其他策略 323
9.1.1 并购套利策略 324
9.1.2 定向增发套利 325
9.1.3 套利重仓停牌股票的投资组合 326
9.1.4 封闭式投资组合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 无风险套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.4 高频交易 341
9.4.1 流动性回扣交易 341
9.4.2 猎物算法交易 342
9.4.3 自动做市商策略 343
9.4.4 程序化交易 343
理论篇
10.1 主要内容 347
10.1.1 机器学习 347
10.1.2 自动推理 350
10.1.3 专家系统 353
10.1.4 模式识别 356
10.1.5 人工神经网络 358
10.1.6 遗传算法 362
10.2 人工智能在量化投资中的应用 366
10.2.1 模式识别短线择时 366
10.2.2 rbf神经网络股价预测 370
10.2.3 基于遗传算法的新股预测 375
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要内容 385
11.2.1 分类与预测 385
11.2.2 关联规则 391
11.2.3 聚类分析 397
11.3 数据挖掘在量化投资中的应用 400
11.3.1 基于som 网络的股票聚类分析方法 400
11.3.2 基于关联规则的板块轮动 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波变换主要内容 409
12.2.1 连续小波变换 409
12.2.2 连续小波变换的离散化 410
12.2.3 多分辨分析与mallat算法 411
12.3小波分析在量化投资中的应用 414
12.3.1 k线小波去噪 414
12.3.2 金融时序数据预测 420
13.1 基本概念 430
13.1.1 线性svm 430
13.1.2 非线性svm 433
13.1.3 svm分类器参数选择 435
13.1.4 svm分类器从二类到多类的推广 436
13.2 模糊支持向量机 437
13.2.1 增加模糊后处理的svm 437
13.2.2 引入模糊因子的svm训练算法 439
13.3 svm在量化投资中的应用 440
13.3.1 复杂金融时序数据预测 440
14.1 基本概念 453
14.1.1 分形定义 453
14.1.2 几种典型的分形 454
14.1.3 分形理论的应用 456
14.2 主要内容 457
14.2.1 分形维数 457
14.2.2 l系统 458
14.2.3 ifs系统 460
14.3 分形理论在量化投资中的应用 461
14.3.1 大趋势预测 461
14.3.2 汇率预测 466
15.1 基本概念 473
15.2 主要内容 476
15.2.1 随机过程的分布函数 476
15.2.2 随机过程的数字特征 476
15.2.3 几种常见的随机过程 477
15.2.4 平稳随机过程 479
15.3 灰色马尔可夫链股市预测 480
第 16章 it技术 486
16.1 数据仓库技术 486
16.1.1 从数据库到数据仓库 487
16.1.2 数据仓库中的数据组织 489
16.1.3 数据仓库的关键技术 491
16.2.1 GPU算法交易 493
16.2.3 c#语言 504
第 17章 主要数据与工具 509
17.1 名策多因子分析系统 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易
波特兰开拓者队:期货自动交易平台 514
17.4 大连交易所套利指令 518
17.5 mt5:外汇自动交易平台 522
第 18章 量化对冲交易系统:D-alpha 528
18.1 系统构架 528
18.2 策略分析流程 530
18.3 核心算法 532
18.4 验证结果 534
表目录
表1 1 不同投资策略对比 7
表2 1 多因子选股模型候选因子 30
表2 2 多因子模型候选因子初步检验 31
表2 3 多因子模型中通过检验的有效因子 32
表2 4 多因子模型中剔除冗余后的因子 33
表2 5 多因子模型组合分段收益率 33
表2 7 夏普收益率基础投资风格鉴别 37
表2 10 大小盘风格轮动策略月收益率均值 46
表2 11 中国货币周期分段(2000—2009年) 49
表2 12 沪深300行业指数统计 50
表2 13 不同货币阶段不同行业的收益率 51
表2 14 招商资金流模型(cmsmf)计算方法 58
表2 15 招商资金流模型(cmsmf)选股指标定义 59
表2 16 资金流模型策略——沪深300 61
表2 17 资金流模型策略——全市场 62
表2 18
动量组合相对基准的平均年化超额收益(部分) 68
表2 19 反转组合相对基准的平均年化超额收益(部分) 69
表2 20 动量策略风险收益分析 71
表2 21 反转策略风险收益分析 73
表2 22 趋势追踪技术收益率 93
表2 23 筹码选股模型中单个指标的收益率情况对比 99
表3 1 ma指标择时测试最好的20 组参数及其表现 117
表3 2 4个趋势型指标最优参数下的独立择时交易表现比较 120
表3 3 有交易成本情况下不同信号个数下的综合择时策略 120
表3 4 自适应均线择时策略收益率分析 124
表3 5 市场情绪类别 126
表3 6 沪深300指数在不同情绪区域的当月收益率比较 128
表3 7 沪深300指数在不同情绪变化区域的当月收益率比较 129
表3 8 沪深300指数在不同情绪区域的次月收益率比较 130
表3 9 沪深300指数在不同情绪变化区域的次月收益率比较 130
表3 10 情绪指数择时收益率统计 132
表3 11 svm择时模型的指标 156
表3 12 svm对沪深300指数预测结果指标汇总 156
表3 13 svm择时模型在整体市场的表现 156
表3 14 svm择时模型在单边上涨市的表现 157
表3 15 svm择时模型在单边下跌市的表现 158
表3 16 svm择时模型在震荡市的表现 159
表3 17 噪声交易在熊市择时的收益率 170
表4 1 各种方法在不同股票数量下的跟踪误差(年化) 190
表4 3 不同开仓比例下的不同保证金水平能够覆盖的市场波动及其概率 211
表4 4 不同仓单持有期下的保证金覆盖比例 212
表6 1 融券标的股票中在样本期内最相关的50 对组合(部分) 248
表6 2 残差的平稳性、自相关等检验 249
表6 3 在不同的阈值下建仓、平仓所能获得的平均收益 251
表6 4 采用不同的模型在样本内获取的收益率及最优阈值 252
表6 5 采用不同的模型、不同的外推方法在样本外获取的收益率(%) 253
表6 6 主成分配对交易在样本内取得的收益率及最优阈值 255
表6 7 主成分配对交易在样本外的效果 255
表6-8 各种模型下统计套利的结果 256
表6 9 延后开仓+提前平仓策略实证结果 260
表6 10 各行业的配对交易结果 261
表7 2 多头股票—股票期权套利案例损益分析表 284
表7 3 多头股票-指数期权套利案例损益分析表 285
表7 4 转换套利分析过程 286
表7 5 买入跨式套利综合分析表 289
表7 6 买入跨式套利交易细节 289
表7 7 卖出跨式套利综合分析表 291
表7 8 卖出跨式套利交易细节 292
表7 9 买入宽跨式套利综合分析表 293
表7 11 买入蝶式套利综合分析表 296
表7 12 卖出蝶式套利综合分析表 298
表7 13 买入飞鹰套利分析表 300
表7 14 卖出飞鹰式套利综合分析表 301
表9 1 主要并购方式 324
表9 2 并购套利流程 325
表9 3 鹏华300 lof两次正向套利的情况 339
表9 4 鹏华300 lof两次反向套利的情况 340
表10 1 自动推理中连词系统 352
表10 2 模式识别短线择时样本数据分类 369
表10 3 rbf神经网络股价预测结果 375
表10 4 遗传算法新股预测参数设置 379
表10 5 遗传算法新股预测结果 380
表11 1 决策树数据表 389
表11 2 关联规则案例数据表 392
表11 3 som股票聚类分析结果 403
表11 4 21种股票板块指数布尔关系表数据片断 404
表12 1 深发展a日收盘价小波分析方法预测值与实际值比较 427
表12 2 不同分解层数的误差均方根值 428
表13 1 svm沪深300指数预测误差情况 445
表13 2 svm指数预测和神经网络预测的比较 445
表13 3 技术反转点定义与图型 448
表14 1 持续大涨前后分形各主要参数值 463
表14 2 持续大跌前后分形个主要参数值 465
表14 3 外汇r/ s 分析的各项指标 469
表14 4 v(r/s)曲线回归检验 470
表15 1 灰色马尔可夫链预测深证成指样本内(2005/1—2006/8) 484
表15 2 灰色马尔可夫链预测深证成指样本外(2006/9—2006/12) 484
表16-1 vba的12种数据类型 499
表18-1 d-alpha系统在全球市场收益率分析 534
前言
连续20年,每年赚60%,从来没有出现过亏损!
这是量化投资大师西蒙斯教授给出的战绩,这个成绩将
沃伦·巴菲特和索罗斯远远地抛在身后,这已经成为
华尔街顶尖对冲基金经理眼中的神话,一个让人瞠乎绝尘的神话!
量化投资是在国际投资界兴起的一个新方法,发展势头迅猛,和基本面分析、技术面分析并称为三大主流方法。基本面分析和技术面分析可以看做是传统的证券分析理论,而量化投资则是结合了现代数学理论和金融数据的一种全新的分析方式,是现代化的证券分析方法。
和传统的基本面分析和技术面分析比较起来,量化投资最大的特点就是定量化和精确化。
采用传统分析方法取得良好业绩的投资者首推
沃伦·巴菲特,连续40年,每年可以获得20%的复合稳定收益。而量化投资大师西蒙斯则连续20年为投资者获得超过35%的收益率,若包括业绩提成在内,则实际每年投资收益率超过60%,由此可见量化投资的巨大威力。
2008年笔者去
欧洲访问研究,和
德意志银行、
雷曼兄弟公司以及一家欧洲很大的对冲基金的研究员交流,2010年去
香港特别行政区和
摩根士丹利、美林证券以及
野村证券的投资经理交流。给我最大的感受就是:这些国际顶级的投行在量化投资模型研究的深入与扎实。‘一切用数据说话’,这是他们任何投资决策的基石。
不知道有一天中国的金融市场全面开放后,国内的投资者能否抵挡
华尔街金融大鳄们的冲击。于是决定写一本有关量化投资的书。
当开始动笔写作本书时候,才发现这是一个极其艰难的工作。市面上没有任何一本谈论量化投资策略的书籍可供参考,故事书倒有几本,但关于策略的内容少之又少,而有关量化投资的研究报告也散落在网络的各个角落。经过3个多月的精心筛选,精选出60多个精华策略,形成了本书的主要内容。希望能起一个抛砖引玉的作用,让更多的投资者采用这种先进的分析方法,获取更高和更稳定的投资收益。
本书特色
第一,实战性。书中的案例绝大多数来自于实际的市场数据,只有很少一部分是纯理论的分析。尤其是策略篇中的内容大部分来自于专业投资机构的研究报告,具有极强的实战价值。
第二,基于中国市场。与量化投资最接近的书籍当属“金融工程”,但金融工程中绝大多数的案例都来自于国外市场,很多策略在国内市场还不具备投资条件。本书中的案例基本上都是对国内市场(股票、期货等)中的实际交易数据的分析,特别适合国内的投资者。
第三,理论性。量化投资离不开最新的数学和计算机理论的支持,本书用了将近一半的篇幅来阐述与量化投资有关的基础理论,并用了很多案例来说明这些理论的应用方法。避免了一般投资策略书籍重技术而忽视理论的缺点,从而使量化投资更加科学化。
本书主要内容
本书的内容分为:策略篇和理论篇。策略篇中阐述了各种量化投资的策略与方法,理论篇则详细介绍了支持量化投资的各种数学工具。
策略篇一共介绍了8个方面的投资策略,分别是量化选股、量化择时、股指期货
套利、商品期货套利、统计套利、期权套利、算法交易及其他策略。
投资策略 概述
量化选股 量化投资最重要的策略,主要是研究如何利用各种方法选出最佳的股票组合,使得该股票组合的收益率尽可能高的同时,保持尽可能的稳定性。量化选股一章阐述了8种不同角度的策略,分别为多因子模型、风格轮动模型、行业轮动模型、资金流模型、
动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型
量化择时 量化投资中最难的,也是收益率最高的一种策略,主要研究大盘及个股走势,并进行相应的高抛低吸操作。如果能够正确判断大盘,则收益率会比单纯的买入-持有策略收益要高很多。这一章主要阐述了8种择时模型,分别是趋势择时、市场情绪择时、有效资金模型、牛熊线模型、Hurst指数模型、SVM模型、SWARCH模型和异常指标择时
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362