地面点的垂线同其在椭球面上对应点的法线之间的夹角u,它表示
大地水准面的倾斜。垂线偏差通常用两个分量来表示,一个是
子午圈分量ξ,即垂线偏差南北分量;一个是卯酉圈分量η,即垂线偏差东西分量。
垂线偏差的另一定义是地面点的垂线方向同正常重力方向之间的夹角。这两种定义的差异,就是正常重力方向同椭球面法线之间的夹角,它位于子午面内。这个差值可以从理论上算出。两种垂线偏差可以相互换算。
又称重力垂线偏差,是垂线同平均地球椭球面法线之间的夹角。因为平均地球椭球是唯一的,所以过地面点的法线或正常重力线也是唯一的。因而垂线偏差具有绝对意义,它可以利用重力异常,按韦宁·迈内兹公式计算。
在经典的
地球形状理论中,需要知道
大地水准面上的垂线偏差,因而需将地面点的垂线归算到大地水准面上,组成大地水准面上相应的垂线偏差。由于这种归算同大地水准面和地面间的质量分布有关,而目前尚不能准确地知道这种分布,因此,计算大地水准面上的垂线偏差分量,理论上就不可能是严密的。为了避免这种不严密性,可采用
莫洛坚斯基理论计算地面点的垂线偏差。用零次趋近的莫洛坚斯基公式计算的地面垂线偏差和用韦宁·迈内兹公式算出的数值是一样的。
又称天文大地垂线偏差,是垂线和参考椭球面的法线之间的夹角。因为不同的参考椭球过地面点的法线不同,垂线偏差也各不相同,所以它具有相对意义。相对垂线偏差可以利用天文和大地经纬度来计算。