计算神经科学是使用
数学分析和
计算机模拟的方法在不同水平上对神经系统进行模拟和研究:从
神经元的真实生物物理模型,它们的动态交互关系以及神经网络的学习,到脑的组织和神经类型计算的量化理论等,从计算角度理解脑,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,探索新型的信息处理机理和途径,从而创造脑。它的发展将对智能科学、信息科学、认知科学、
神经科学等产生重要影响。
科学简介
对脑和神经系统的研究源远流长。至18世纪末,人们认识到脑分为不同的部位,行使不同的功能。 1891年Cajal创立
神经元学说,认为整个神经系统是由结构上相对独立的神经细胞构成。在Cajal神经元学说的基础上,1906年Sherrington提出了神经元间突触的概念。 20世纪20年代Adrian提出神经动作电位。1943年McCulloch 和 Pitts提出了的 M-P 神经网络模型。 1949年Hebb提出了神经网络学习的规则。50年代Rosenblatt 提出了的感知机 (Perception) 模型。八十年代以来, 神经计算研究取得了进展。Hopfield引入Lyapunov函数(叫做"计算能量函数")给出了网络稳定判据, 它与VLSI有直接对应关系, 为神经
计算机的研制奠定了基础。同时它还可用于联想记忆和优化计算, 开拓了神经网络用于计算机的新途径。甘利俊一(Amari)在神经网络的数学基础理论方面做了大量的研究,包括统计神经
动力学、神经场的动力学理论、联想记忆,特别在信息几何方面作出了一些奠基性的工作。计算神经科学的研究力图体现人脑的如下基本特征:① 大脑皮层是一个广泛连接的巨型复杂系统; ② 人脑的计算是建立在大规模并行模拟处理的基础之上; ③ 人脑具有很强的"客错性"和联想能力, 善于概括、类比、推广; ④ 大脑功能受先天因素的制约, 但后天因素, 如经历、学习与训练等起着重要作用,这表明人脑是有很强的自组织性与自适应性。人类的很多智力活动并不是按逻辑推理方式进行的, 而是由训练形成的。
目前,对人脑是如何工作的了解仍然很肤浅,计算神经科学的研究还很不充分,我们面临的是一充满未知的新领域,必须在基本原理和
计算理论方面进行更深刻的探索。通过对人脑神经系统的结构、信息加工、记忆和学习机制的分析研究,从人脑工作的机理上进行仿真,提出智能科学的新思想、新方法。
计算神经科学的科学问题如下:
• 神经活动的基本过程:研究
神经元离子通道及其调控、突触传递及其调控、神经元受体及信号转导、神经活动的同步机理。
• 单个神经元的计算模型:单个神经元是构成神经网络的基本单元,它由神经细胞体、树突和轴突构成,神经元之间通过突触连接
• 学习和记忆的神经机制:神经系统因活动和环境等因素的作用而在结构和功能上发生改变,这种改变是学习和记忆等高级脑功能的基础。研究产生这种可塑性、特别是神经突触的可塑性的机制以及学习规则。研究神经元回路信息编码及加工机理。
•
神经元和神经系统发育的分子机制:神经细胞在脑发育时由神经
干细胞分化而来,以后经过迁移、长出突起、通过形成突触互相连接等过程逐步形成复杂精密的脑。研究调节神经干细胞分化、维持神经细胞存活、调节神经细胞迁移、突起生长和突触形成的神经营养因子,研究它们的作用和作用机理。
• 神经递质:研究神经递质的构成,神经递质的合成、维持、释放及与受体的相互作用。
历史起源
认知神经科学的观点认为特定脑部区位负责特定的认知功能。这样的看法源自于许多不同的理论,如颅相学(Phrenology)。虽然颅相学最后因为缺乏科学根据而被摒弃,但特定脑区控制特定认知功能的观点仍被采纳。而现今,在扬弃了观察头壳外观这样不科学的方式之后,取而代之的是对于头皮的电生理测量,或是更多对脑部本身的观测。
颅相学
认知神经科学的起源和颅相学(Phrenology)有很大的关系。颅相学实质上是一个伪科学,并声称头皮的形状会影响行为的表现。在19世纪早期,高尔(Franz Joseph Gall)和史普汉(J. G. Spurzheim)相信人大脑可以被分为35个不同的区域。在高尔在他的书《神经系统的解剖生理学概论和脑部深论》声称头壳上较大的凸起代表着这块区域被较频繁的使用。颅相学广被大众所注意,并且发行了以颅相学为主题的期刊。甚至发明了颅相测定仪以测定头颅上的凸起。
总体论
法国的实验心理学家佛罗伦斯(Pierre Flourens)如众多的科学家一样质疑颅相学的观点。虽然他的实验对象为兔子和鸽子,但他发现特定部位的脑伤并不会造成行为上的改变。由此他认为行为表现是由不同脑区共同参与,也就是总体论的观点。
区位化论
欧洲一些科学家如杰克森(John Hughlings Jackson)所进行的一些研究让区位化论重新成为主流的观点。杰克森的研究特别在于有癫痫症状的脑伤病人,他发现病人在
癫痫发作的时候,时常会造成相同的阵挛和肌肉紧张的情况。因此他认为每次的发作一定都是发生在相同的脑区,并且提出特定脑区负责特定功能的看法。在后续对于脑叶的研究中,区位化观点有很大的影响和帮助。
兴起
法国的神经科学家布洛卡(Paul Broca)在1861年报告了一位病人的症状。这位病人可以听的懂语言,但是无法说,并且只能发出“谈”(tan)的音。这位病人之后被发现他左脑的额叶有脑伤,而这块脑伤的区域现今则被称作布洛卡氏区。另外一位神经科学家卡尔·威尼基(Carl
Wernicke)则发现一位
中风病人无法听取语言讯息和阅读文字,但可以流利的说话(虽然说的是没有意义的语句)。这位病人则是有一个在左脑顶叶和叶交界处的脑伤。而这块区域现今被称作威尼基区。这两个病例是支持区位化论的重要证据,因为特定区域的脑伤造成了特定的行为改变。布洛卡和威尼基的研究促成了神经心理学的诞生,而这个新领域研究的是心理现象和脑伤之间的关系。
脑功能定位
在1870年,德两位国医师希兹格(Eduard Hitzig)和费理屈(Gustav Fritsch)发表了他们在动物实验的发现。他们在狗的不同的大脑皮质部位通上电流,可以造成不同相应的动作。由此他们认为行为的表现是源自于脑细胞的层次的运作。
德国的神经解剖学家科比尼安·布洛德曼(Korbinian Brodmann)使用尼斯(Franz Nissl)发明的组织染色技术观察脑部的
细胞种类。于1909时,他发表了他的结论:脑部是由52个不同的部份所组成。这些分区现在称为布洛德曼分区。现在看来,有些分区划定的非常精确,如布洛德曼17区和布洛德曼18区。
神经教条
在20世纪早期,
圣地亚哥·拉蒙-卡哈尔(Santiago Ramon y Cajal)和卡米洛·高尔基(Camillo Golgi)开始研究神经细胞的结构。高基发展出银染色法(Silver stain),可以将特定区域的
细胞一同染色。使用这样的技术观察神经细胞,让
马克西姆·高尔基认为细胞之间,在共同的
细胞质内有直接的连接。卡哈尔则反对这样的观点。他在脑部含有较少髓鞘的部位做染色,发现神经细胞并不是紧密相连,而是分离的。他进一步发现神经细胞会单方向的传递电讯号。这些发现称为神经教条,并对之后了解神经细胞的功能提供了基础的理论。也因次这个贡献,高基和卡哈都获得了1906年的
诺贝尔生理学或医学奖奖。
认知科学诞生
1956年9月11日,认知科学大会在
麻省理工学院举行。在大会上乔治·A·米勒(George A. Miller)发表了他著名的研究《神奇的数字 7 +/- 2》。
诺姆·乔姆斯基(Noam Chomsky)和艾伦·纽厄尔Newell和
司马贺(Simon)发表了他们在
计算机科学上的成果。耐瑟(Ulric Neisser)在他1967年的书“认知心理学”中评论了许多在这次会议中所发表的成果。“心理学”这个名词在1950到1960年代逐渐式微,取代的是认知科学的开始。行为主义的科学家如乔治·A·米勒开始重视语言的内在表征(representation),而不只有外在的行为表现。
大卫·马尔(David Marr)提出记忆的阶层性表征,也让许多心理学家接纳了心理功能是需要由脑中特别的演算法处理。
认知神经科学
在1980年代之前,
神经科学和认知心理学这两个领域之间几乎没有互动。.在1970年代晚期,“认知神经科学”这个名词在一辆计程车的后座诞生,由乔治·A·米勒和麦可·葛詹尼加(Michael Gazzaniga)共同创立。认知神经科学开始用实验心理学、神经心理学和神经科学的研究方法来为认知科学奠定基础。在20世纪晚期,新的科学技术成为认知神经科学重要的研究方法。这些技术般含了穿颅磁刺激(TMS)、功能性磁振造影(fMRI)、脑电图(EEG)和脑磁图(MEG)。有时也会使用到其他的脑造影技术,如正子断层扫瞄造影(PET)和单光子电脑断层扫描(SPECT)。在动物上使用的单细胞电位记录(Single-unit recording)也是重要的技术。另外其他的技术还包含微神经图(microneurography)、脸部的肌电图(EMG)和眼球追踪仪(eye tracking)。整合
神经科学(Integrative neuroscience)试着将不同领域和不同尺度(如生物学、心理学、解剖学和临床经验)所得到的研究成果,整合成一个统合的描述性模型。
主题
注意力 意识 决策判断 学习 记忆