功率场效应晶体管(VF)又称VMOS场效应管。在实际应用中,它有着比
晶体管和MOS场效应管更好的特性。
1. 具有较高的 开关速度。
2. 具有较宽的安全工作区而 不会产生热点,并且具有正的
电阻温度系数,因此适合进行 并联使用。
3. 具有较高的 可靠性。
4. 具有较强的 过载能力。短时过载能力 通常额定值的4倍。
5. 具有较高的 开启电压,即是 阈值电压,可达2~6V(一般在1.5V~5V之间)。当环境 噪声较高时,可以选 用 阈值电压较高的管子,以提高 抗干扰能力;反之,当噪声较低时,选用阈值电压较低的管子,以降低所需的输入驱动信号电压。给电路设计带来了极大地方便。
6. 由于它是 电压控制器件,具有很高的 输入阻抗,因此其驱动功率很小,对驱动电路要求较低。
一、功率场效应晶体管是 电压控制器件,在功率场效应晶体管中较多采用的是 V沟槽工艺,这种工艺生产地管称为
VMOS场效应晶体管,它的栅极做成V型,有沟道短、耐压能力强、跨导线性好、开关速度快等优点,故在 功率应用领域有着广泛的应用,出现一种更好的叫 TMOS管,它是在 VMOS管基础上改进而成的,没有V形槽,只形成了 很短的导通沟槽。
利用 半导体的场效应制作的功率
晶体管。半导体的场效应指通过垂直于半导体表面的 外加
电场,可以控制或改变靠近表面附近薄层内半导体的导电特性。功率场效应晶体管元件符号如图1所示。图1中G、D、S分别代表其栅极、漏极和源极。功率MOSFET(金属-
氧化物半导体场效应晶体管)是最重要的一种功率场效应晶体管,除此之外还有MISFET、MESFET、JFET等几种。功率MOSFET为 功率集成器件,内含数百乃至上万个相互并联的MOSFET单元。为提高其集成度和耐压性,大都采用垂直结构(即VMOS),如VVMOS(V型槽结构)、VUMOS、SIPMOS等。图2显示了一种SIPMOS(n沟道增强型功率MOSFET)的部分剖面结构。其栅极用导电的多晶硅制成,栅极与半导体之间有一层
二氧化硅薄膜,栅极与源极位于硅片的同一面,漏极则在背面。从总体上看,漏极电流垂直地流过硅片,漏极和源极间电压也加在硅片的两个面之间。该器件属于耗尽型n沟道的功率MOSFET,其源极和漏极之间有一n型导电沟道,改变栅极对源极的电压,可以控制通过沟道的电流大小。耗尽型器件在其栅极电压为零时也存在沟道,而 增强型器件一定要施加栅极电压才有沟道出现。与n沟道器件对应,还有p沟道的功率MOSFET。图3为图2所示SIPMOS的输出特性。它表明了栅极的控制作用及不同栅极电压下,漏极电流与漏极电压之间的关系。图3中,在非饱和区(Ⅰ),源极和漏极间相当于一个小
电阻;在亚阈值区(Ⅲ)则表现为开路;在饱和区(Ⅱ),器件具有放大作用。
功率MOSFET属于 电压型控制器件。它依靠多数载流子工作,因而具有许多优点:能与
集成电路直接相连;开关频率可在数兆赫以上(可达100MHz),比双极型功率
晶体管(GTR)至少高10倍;导通电阻具有正温度系数,器件不易发生二次击穿,易于并联工作。与GTR相比,功率MOSFET的导通电阻较大,
电流密度不易提高,在100kHz以下频率工作时,其功率损耗高于GTR。此外,由于导电沟道很窄(微米级),单元尺寸精细,其制作也较GTR困难。在80年代中期,功率MOSFET的容量还不大(有100A/60V,75A/100V,5A/1000V等几种)。
功率MOSFET是70年代末开始应用的 新型电力电子器件,适合于 数千瓦以下的电力电子装置,能显著缩小装置的体积并提高其性能,预期将逐步取代同容量的 GTR。功率MOSFET的发展趋势是提高容量,普及应用,与其他器件结合构成复合管,将多个元件制成组件和模块,进而与控制线路集成在一个模块中(这将会更新电力电子线路的概念)。此外,随着频率的进一步提高,将出现能工作在
微波领域的大容量功率MOSFET。