约翰·缪勒
卒于罗马。1671年定居
纽伦堡,在B.瓦尔特的资助下,翻译、注释并出版了
克罗狄斯·托勒密、
阿波罗尼斯、
阿基米德和
海伦等
希腊数学家的著作。这些工作对
欧洲数学的发展起了重要的推动作用。
生活经历
J.
弗里德里希·缪勒( Johannes Müller),关于他的早期生活人们知道的不多,他12岁以前在家中受教育,然后去
莱比锡市学习.1450年4月14日在
维也纳大学注册,开始跟随G.波伊巴赫(Peuerbach)学习
天文学。雷格蒙塔努斯于1452年1月16日获得
学士,这时他才15岁.但由于该大学的规章制度,他直到21岁才得到硕士学位.1457年11月11日,他受聘为维也纳大学教员,从而成为
波伊巴赫的学生和同事.在雷格蒙塔努斯的一生中,波伊巴赫对他的影响最大.波伊巴赫曾在
意大利讲授数学,之后定居维也纳并使该大学成为当时
欧洲数学的中心之一.他写过一本算术书和许多天文学著作,其中大部分直到他去世后才出版.是波伊巴赫最先认识到年轻的雷格蒙塔努斯的天才,他非常欣赏雷格蒙塔努斯对天文学的热爱,并极其认真地教育他.雷格蒙塔努斯从
行星理论学起,逐渐掌握了
克罗狄斯·托勒密(Ptolemy)的天文学说.他还试图掌握一切对天文学有用的知识,努力钻研
几何学、算术与三角学,为他以后的发展打下了基础.与
波伊巴赫的友谊使雷格蒙塔努斯终生受益.
1460年5月5日,
神圣罗马教皇的使节C.
贝萨里翁(Bessa-rion)到达维也纳,经过波伊巴赫的介绍,他成为第二个对雷格蒙塔努斯的一生产生重要影响的人物.贝萨里翁不仅是教皇的一位成功的外交家,而且也是一位有造诣的学者,尤其在
天文学方面.他的母语是
希腊语,又精通拉丁文,他热衷于向使用拉丁文的西方知识界介绍古希腊经典作家的著作,力劝波伊巴赫将
克罗狄斯·托勒密的《天文学大成》 (Almagest)缩写成拉丁文出版,使之“更简明易懂”,因为托勒密原著的语言晦涩,思想深奥.当时维也纳大学并不教授希腊语,波伊巴赫也未掌握这门语言,他利用12世纪克雷莫纳的
杰拉德(Gerard of Cremona)的拉丁文本勉力译到第6卷便于1461年4月8日去世了,临终前他请求雷格蒙塔努斯继续完成这项工作.为了实现波伊巴赫的遗愿,雷格蒙塔努斯开始努力学习
希腊语,由于有
贝萨里翁的指导,他在较短的时间里便熟悉了这门语言.1461年11月20日他跟随贝萨里翁到达罗马.在这期间他阅读了贝萨里翁提供给他的一些希腊文科学著作.根据记载,1463年4月28日之前雷格蒙塔努斯便完成了《天文学大成》的缩写,名为《概论》 (Epitome).他把
波伊巴赫和自己合诈完成的这本著作题献给了贝萨里翁,但直到1496年8月31日该著作才得以出版,这已是雷格蒙塔努斯去世后20年了. 在罗马期间,雷格蒙塔努斯广交学者,尤其是那些熟悉希腊文的人,同时又忙于天文观测,收集珍本图书(包括希腊文和拉丁文的),有很大收获.1463年7月5日贝萨里翁作为
教皇特使赴
威尼斯共和国,雷格蒙塔努斯同行.1464年春天,雷格蒙塔努斯在帕多瓦(当时在威尼斯共和国统治之下)大学演讲,内容是关于9世纪穆斯林科学家法汉尼(al-Farghànì)的工作.他在这次演讲中声称自己读过所有拉丁文和希腊文的经典学术著作.1464年4月2日的
月食之后,他离开帕多瓦赴威尼斯等候
贝萨里翁,正是在这里的5—6月间他完成了《论各种三角形》(De triangulis omnimodis)一书.他将该书题献给贝萨里翁,这是雷格蒙塔努斯最重要的著作,但直到1533年才首次出版.此外,他还在
威尼斯撰写了一篇对话,其内容是行星理论.
1467年,雷格蒙塔努斯接受
匈牙利国王的邀请来到
布达佩斯,在当时的皇家天文学家M.贝利卡(Martin Bylica of Olkusz)的协助下编制了他的《方位表》(Tables of directions). 1468年,他在布达佩斯计算了一张
正弦表 (取sin90°=107). 1471年,他离开匈牙利来到
纽伦堡,在那里建立了一个印刷所以便出版科学著作,从而成为最早出版
天文学与数学著作的人之一.可能是1476年1月第伯河决口之后横扫
罗马古城的一场
瘟疫夺去了雷格蒙塔努斯的生命.对他死因的另一种说法是,因他宣称要纠正乔治(Geroge of Trebizond)天文学著作中的错误,对方怀恨在心,导致乔治之于将他毒死.1476年7月6日,雷格蒙塔努斯卒于罗马.
研究发现
雷格蒙塔努斯对数学的主要贡献是在三角学方面.他的代表作《论各种三角形》 ,是第一本使三角学脱离天文学而成为数学的一个独立分支的系统著作.在雷格蒙塔努斯之前,三角学的发展已经历了很长的历程,首先从天文学的研究中产生出球面三角的若干知识,逐渐地发展到平面三角学.公元前1600年的
巴比伦人便已具有弦的某些知识,“普林顿322号”(Plimpton 322)泥板的内容便显示了他们对三角形的深刻认识.
古埃及人也可能早已发现三角形的不同元素之间具有某种关联.希腊人对
天文学和
几何学的研究促进了三角学的发展,他们首先认识到有必要建立三角形的边与角之间的精确关系.希帕
霍斯(
喜帕恰斯)曾为了天文观测的需要作出一个弦表,门纳劳斯(Menelaus)则给出了三角形的一个基本
定理.之后,
克罗狄斯·托勒密在其巨著《天文学大成》中发展了弦表,这些弦表在欧洲一直被广泛采用,直到雷格蒙塔努斯的著作发表之前没有多大改变.三角学的下一步发展是在东方,印度人和
阿拉伯人都为之做出了贡献.印度人考虑半弦和圆的半径,这样他们就发现了现代三角学赖以存在的基础.阿拉伯人艾布瓦法(Abul Wefa)首次引入正割和余割;巴塔尼(al-Battānī)为测定
太阳的仰角而提出的概念“直阴影”和“反阴影”后来发展成了“余切”和“正切”;纳西尔丁(Nasīr ad-Din)则指出了平面三角学与球面三角学的差异,开始使三角学脱离
天文学.雷格蒙塔努斯在写作《论各种三角形》时,知晓
克罗狄斯·托勒密以及一些
印度、阿拉伯数学家的工作.由于他不懂
阿拉伯语,他只能阅读已译成拉丁文的一部分著作.他从前人的工作中知道了弦表、
正弦律以及余弦律等,从而建立起三角学的统一基础,使之成为一个系统的整体.
贡献意义
雷格蒙塔努斯的三角学研究是为天文学服务的.15世纪末,托勒密的成就仍然是天文学思想发展的顶峰.
波伊巴赫和雷格蒙塔努斯合作完成的《概论》使人们更易于掌握托勒密的巨著《天文学大成》,然而其作用不仅在于促使人们对过去的知识有更好的理解,更重要的是它对当时的科学发展做出了贡献.《概论》并不局限于对《天文学大成》的翻译,它还添加了后来的观测数据,修正了一些计算并加入一些评论性的文字,其中之一表明托勒密的月球理论所需要的月球的视直径与实际相差甚远,这一段(《概论》第5篇命题22)引起了
尼古拉·哥白尼(当时是波伦尼亚大学的学生)的注意.惊异于托勒密天文体系(已经流行了1300多年)的这一错误,哥白尼开始尝试为现代天文学奠定基础,从而摒弃了旧的
克罗狄斯·托勒密体系.
雷格蒙塔努斯编制了许多天文表.他的《方位表》中包括
天体黄经的计算,该表于1490年初版,以后多次再版.在问题10中,他指出应该通过使sin90°等于105而不是6×105(在《论各种三角形》第5卷
定理25中使用了这一底数)来摒弃
正弦表的60进制特征.在《论各种三角形》中他没有使用正切函数,但在《方位表》中使用了间隔1°直到90°的正切表.他取tg45°=105,是我们现今这类表的典范.1468年,雷格蒙塔努斯在
布达佩斯编制了一个正弦表,取sin90°=107.在他认识到10进制的长处之前,他已经准备了一个60进制的正弦表,取sin90°=6×106.这两个表都于1541年初版于
纽伦堡,同时出版的还有他的论文《正弦表的制作》(Construction of sine).此外,他还在
匈牙利完成一张关于天空每日视旋转的表,并且阐述了它的几何基础.
雷格蒙塔努斯自己出版了一些科学著作,包括他的《星历表》 (Ephemerides)和
波伊巴赫的《行星新论》(New theory of theplanets).《星历表》给出了1475—1506年间每天的
天体位置,有趣的是,C.
克里斯托弗·哥伦布(
科伦坡)在第四次航海探险时随身携带了一份《星历表》,并利用它预示的1504年2月29日的
月食吓唬
牙买加的土著印第安人,终于使他们屈服. 雷格蒙塔努斯的《论各种三角形》是
欧洲第一部独立於
天文学的三角学著作。书中对平面三角和球面三角进行了系统的阐述,还有很精密的
三角函数表。
尼古拉·哥白尼的学生
雷蒂库斯在重新定义三角函数的基础上,制作了更多精密的三角函数表。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362