贝尔纲定理是
点集拓扑学和泛函分析中的一个重要的工具。这个
定理有两种形式,每一个都给出了拓扑空间是
贝尔空间的充分条件。该定理由勒内-路易·贝尔在他1899年的博士论文中证明。
(BCT1)每一个完备度量空间都是贝尔空间。更一般地,每一个同胚于某个完备伪度量空间的开子集的拓扑空间都是贝尔空间。因此每一个完备可度量化的拓扑空间都是贝尔空间。(BCT2)每一个局部紧豪斯多夫空间都是贝尔空间。其证明类似于前一个陈述;有限交集性质取得了完备性扮演的角色。
注意从以上任何一个命题都不能推出另一个,因为存在一个不是局部紧的完备度量空间(带有定义如下的度量的
无理数),也存在一个不可度量化的局部紧豪斯多夫空间(不可数福特空间)。参见以下文献中的Steen and Seebach。
BCT1也表明每一个没有孤立点的完备度量空间都是不可数的。(如果X是一个可数的完备度量空间且没有孤立点,那么在X中每一个单元素集合都是无处稠密的,因此X在它本身内是第一纲)。特别地,这证明了所有
实数所组成的集合是不可数的。
实数空间R;
无理数,其度量定义为d(x, y) = 1 / (n + 1),其中n是使x和y的连分数展开式不同的第一个指标(这是一个完备度量空间);康托尔集。
根据BCT2,每一个
流形都是贝尔空间,因为它是局部紧空间,也是豪斯多夫空间。这甚至对非仿紧(因此不可度量化)的流形如长直线也是成立的。