内燃机进
气管是指将内燃机机器燃烧需要的气体,导入机器内部的气管。进气管必须保证足够的流通面积,避免转弯及截面突变,改善管道表面的光洁度等,以减小阻力。为此,在高性能的汽油机上采用了直线型进气系统,在直线化的同时,还应合理设计气道节流和进气管长度,布置适当的稳压腔容积等,以期达到高转、高功率的目的。
产品分类
不同形状、长短、截面积的进气管形状,代表着这台
发动机的设计诉求。从形状上看,进气管可分为垂直进气道和回旋进气道。
垂直进气道因为进气阻力小,利于在高转形成
共振,提高进气效率,同时也便于布置喷油嘴,一般适用于强调高转表现的发动机;而回旋进气道能有利于在进气时产生涡流,提高空气和汽油的混合度,利于在低转提高缸内燃烧效率,一般适用于强调低转表现的发动机。
例如宝马的招牌,搭载在M5上的V10发动机,它没有像
日本的三菱、本田那样采用很多复杂的技术来提升发动机的响应速度、高转速时的大功率输出等等,而是采用最直接、最纯粹的方式来实现对高性能的诠释。这台V10
发动机的十个进气管都是采用非常短的垂直设计,并且在每个进气管都装有节气阀,这些是强调高转、响应的最明显设计特征。
而进气道旋转最明显的则是柴油发动机,一般柴油发动机的转速都不高,强调的是低转速时的动力表现,所以柴油发动机毫不例外的全是采用回旋进气道。有的柴油车还刻意增加进气道末端的回旋度数,以求产生最大限度的进气涡流,达到提高空气和燃油混合程度的目的。
而当转速提升后,进气的速度和频率越来越快,这种空气流动
惯性所产生的涡流却变成了一种降低进气效率的罪魁祸首,不便于油气
混合物更多更快的被吸入气缸。其实这很好理解,一个回旋的管路,对于空气产生的气阻,肯定是要比直通的管路要大得多的。所以这时,垂直的进气道更加适合
发动机的工况需求。
进气管形状对喷油嘴的要求
两种形状的进气管,喷油嘴的布置位置也不相同。垂直进气管因为形状简单,占用空间小,进气效率高,更加适合采用缸内直喷技术(如三菱的GDI),即使如同
宝马M5的V10发动机,没有采用缸内直喷,也能把喷油嘴布置得很靠近进气阀。
这样一来,发动机的动力性和响应性就都能得到提高。但是回旋进气道,必须采用较为复杂的螺旋状,这样比较占空间,所以一般喷油嘴都离进气阀比较远,油气
混合物要经过较长的距离才能到达汽缸内,这就大大减低了
发动机的响应性,并且一部分混合气会附着在进气道内壁,经济性也会受牵连。
性能影响
进气管是电控燃油喷射式发动机和化油器式发动机区别最大的结构件之一。电喷发动机因进气管中只有空气流过,所以在进行进气管结构设计时,应充分考虑进气管的动态效应(
惯性效应和波动效应)以提高充气效率,此外还要考虑进气均匀性。进气系统与发动机进行良好的动态匹配,使发动机的
扭矩特性可在较宽广的转速范围内有较大的提高。在实际应用中,有按特定转速区域,利用进气时的惯性效应和波动效应设计的具有特定长度的进气管,也有可变长度的进气管。
在进气歧管的结构参数中,决定波动效应对进气影响的主要结构参数是进气歧管的长度。为确保利用波动效应,应尽量保证足够大的稳压腔容积。进气管主要参数对
发动机进气性能的影响归纳为:
(1)进气管进气口直径,决定总进气量,根据节气门直径确定。
(2)进气歧管直径,决定各缸的进气量,根据进气道入口直径确定。
(3)进气歧管长度,影响动态效应的作用。在进气管优化计算中,将其作为目标参数进行优化。
(4)稳压腔容积,影响波动(谐振)效应。合适的稳压腔容积不仅可以利用波动效应提高充气效率,而且可以使稳压腔内的压力环境相对稳定,为利用动态效应提供良好条件,同时消除各缸进气互相干扰,提高进气均匀性。
(5)进气口方向,影响进气均匀性。通过对各种因素的分析,确定进气管优化计算的优化目标参数为进气歧管长度和稳压腔等效直径。
设计要求
进气管包括进气主管与进气支管。
发动机除要求动力性外,还必须有好的经济型和排放性能。在汽油机上,进气管还必须考虑燃烧的雾化、蒸发、分配以及压力波的利用等问题。在柴油机上,还要求气流通过进气道在汽缸中形成进气涡流,以改善混合气形成和燃烧。这些要求往往互相矛盾,如,为得到高速、高功率,进气管直径宜选大些,而为中,低速经济考虑,进气管宜选小些,故必须根据用途谐调处理。
控制的联系
发动机进气管真空度(又称负压)是进气管内气压与大气压力差的
绝对值,是汽车发动机各气缸交替进气时对进气管形成的负压值总和,—般用△Px表示。
发动机进气管真空度的大小及其稳定性与工作气缸数量、发动机转速和空燃比的大小成正比,与节气门的开度成反比,也随着进气系统密封性、点火性能的变差而减小。
进气管真空度是发动机的一个综合性技术指标,被称为发动机性能的“晴雨表”。若进气管的真空度符合标准,不仅表明气缸的密封性能良好,而且表明点火性能、配气
相位及空燃比(A/F)也基本符合要求。因此,通过检测进气歧管的真空度可以不解体诊断发动机的多种故障。
基本检测方法
(2)然后将变速杆置入空档,让发动机怠速运转;
(3)再找到节气门后方专门设置的进气系统真空度检测孔,在该处连接真空表(如果没有这种检测孔,可以拆开进气歧管上的一根真空管,用三通接头连接真空表),就可以进行检测。
控制系统的影响
由于进气管真空度的大小意味着发动机转速及负荷的大小,进气管真空度的变化意味着发动机的转速及负荷发生了变化,因此在电控汽车上,发动机进气管的负压被作为一种动力源,广泛应用于电子控制系统的执行器等装置上,例如膜片式进歧管绝对压力传感器、燃油压力调节器、曲轴箱强制通风系统、燃油蒸气回收系统、废气再循环系统、巡行控制系统真空式执行器及制动系统真空助力器等。若进气管真空度失常,将严重影响上述各系统的正常工作。
故障诊断要领
(1)对于四缸轿车
发动机来说,在怠速工况下,如果真空表指针在3/4时间内都指示在正常范围内,只有1/4时间指示在正常范围以外,就意味着有3个气缸工作正常,另外— 个气缸有故障。另外,若某一缸火花塞不跳火,进气管的真空度大约减少⒍8kPa;若某— 缸气门漏气,真空度大约减少13.5kPa;若点火时刻提前3°,真空度大约增加⒊4 kPa。
2)怠速不稳是电喷发动机的最常见的一种故障,在— 般情况下应当:首先检查进气系统。按照故障出现概率高低,引起
发动机怠速不稳的原因依次是:节气门体及真空软管漏气、怠速控制阀被脏物堵塞、空气流量
传感器或节气门位置传感器损坏。这是因为若进气管漏气,将导致进气管的真空度降低,ECU会发出加浓混合气的指令,造成发动机怠速提高,但是多喷的燃油与漏进去的空气无法达到理想的比例,所以发动机在高怠速状态下会产生抖动。
(3)引起尾气排放不合格的原因很多(包括点火系统、供油系统、真空泄漏、气门不密封、气缸盖有裂纹、活塞或活塞环磨损等),但是真空泄漏是比较常见而且隐蔽的原因。当电喷
发动机尾气排放超标时,应当注意检查空气流量传感器(或进气歧管绝对压力传感器)、辅助空气阀、怠速空气控制阀、废气再循环(EGR)阀、炭罐等装置的真空软管及其连接处有无松动、破损或漏气等,因为这些地方漏气都会引起发动机的空燃比异常。
(4)一般来说,若进气管真空度不足,在气缸压力、配气
相位及点火时间正常的情况下,就是进气管漏气。要注意检查节气门体与安装底座之间的密封垫是否密封,该密封垫的材料是纸质或
石棉,经过长时间使用后,由于高温的作用,容易出现损坏和漏气等现象。
(5)若踩住加速踏板才能起动
发动机,松开加速踏板发动机就熄火,说明故障原因是进气量过少,基本可以排除进气系统漏气的可能。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362