同源染色体
生物细胞中结构相同的染色体
同源染色体是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂(参考减数分裂)的四分体时期中彼此联会(若是三倍体及其他奇数倍体生物细胞,联会时会发生紊乱),最后分开到不同的配子(即精子、卵细胞)的一对染色体,在这一对染色体其中的一个来自母方,另一个来自父方。
研究对象
同源染色体(homologous chromosomes)是有丝分裂中期看到的长度和着丝点位置相同的两个染色体,或减数分裂时看到的两两配对的染色体。同源染色体一个来自父本,一个来自母本;它们的形态、大小和结构相同。由于每种生物染色体的数目是一定的,所以它们的同源染色体的对数也一定。例如豌豆有14条染色体,7对同源染色体。同源染色体上常含有不同的等位基因减数分裂时又进行了交换并随机地分配到不同的性细胞中去,这对于遗传重组有重要意义。
正常细胞中,一对同源染色体若表示为由两条染色体A、B组成,在减数分裂中变成“AA`”组和“BB`”组,两组联会形成四分体;有丝分裂中变成“AA`”组和“BB`”组,但两组不联会,在有丝分裂中期染色体的着丝点整齐排列在赤道板上,着丝点分开后染色体平均分配到两个子细胞。
研究意义
在生物体的有性生殖过程中,有性配子是通过细胞分裂的一种——减数分裂形成的。在减数分裂的分裂间期,精原细胞的体积略微增大,染色体进行复制,成为初级精母细胞。复制后的每条染色体都含有两条姐妹染色体,这两条姐妹染色单体并列在一起,由同一个着丝点连接着。分裂期开始后不久,初级精母细胞中原来分散存在的染色体进行联会。而在减数第二次分裂过程中不存在同源染色体。
区分同源染色体与姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的——由一条染色体复制形成的两条子染色体不是同源染色体,因为它们尽管形状大小相同,但它们并非一条来自父方、一条来自母方。
不仅只有减数分裂有同源染色体的存在,有丝分裂也有。所有的只要有一对染色体存在的都会存在。
功能
在减数分裂中的功能
减数分裂(Meiosis)进行两次细胞分裂,产生四个单倍体子细胞,每个子细胞含有亲体细胞的一半染色体。它首先通过分离减数分裂I期中的同源染色体,再通过分离减数分裂II期中的姐妹染色单体,将配子中的染色体数量减少一半。减数分裂I期的过程通常比减数分裂II期长,因为染色质复制需要更多的时间,并且同源染色体在分裂I期通过联会和染色体联会适当定位和分离也需要时间。减数分裂过程的遗传重组(通过随机分离)和交会产生的每个子细胞,均含有来自母体和父体编码基因的不同组合。这种基因重组允许引入新的等位基因配对和遗传变异。生物间的遗传变异通过提供更广泛的自然选择的遗传特性来促使种群更加稳定。因此,减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。
1 前期I
减数分裂I期的前期I中,脱氧核糖核酸已经经历了复制,因此,每个染色体由两个相同的染色单体组成(姐妹染色体),这些染色体由一个共同的着丝粒连接。在前期I的合子阶段,同源染色体相互联会。这种配对通过联会过程发生,其中联会复合体 被组装并沿着它们的长度方向与同源染色体连接。发生在同源染色体之间内聚交联,有助于它们抵抗同源染色体的被拉开直到减数分裂后期。遗传交叉是一种重组,发生在前期I的粗线期。另外经常发生的另一种类型的重组是合成依赖性链退火重组(SDSA)。 SDSA重组涉及配对同源染色单体之间的信息交换,但不涉及物理交换。 SDSA重组也不会导致交叉。在交叉过程中的基因的交换是通过染色体同源部分的断裂和结合来实现的。交换发生在称为交叉站点的场所。一旦交叉发生,该交叉站点将于同源染色体结合,并伴随其后的染色体分离过程。无论是非交换还是交换类型的重组都能起到修复脱氧核糖核酸损伤作用,特别是双链断裂的修复。在前期I的双线期阶段,联会复合体分解,在此之前同源染色体分离,但姐妹染色单体仍通过着丝粒保持不分离。
2 中期I
减数分裂I的中期I中,同源染色体对(也称为二价体或四分体)沿着中期板随机排列。这种随机排列也是细胞引入遗传变异的另一种方式。此时,从纺锤体主轴杆两端发出的减数分裂纺锤体通过着丝点与每个同源物(每对姐妹染色单体)相连。
3 后期I
在减数分裂I的后期I中,同源染色体彼此分开。同源物被分离酶切割后,会释放出将同源染色体臂保持在一起的粘连蛋白。这使得交叉站点得到释放,同源物移动到细胞的相反极。同源染色体被随机分离到两个子细胞中,这两个子细胞将经历减数分裂II以产生四个单倍体子代配子
4 减数分裂II
在减数分裂I中同源染色体的四分体分离之后,姐妹染色单体也进行了分离。两个单倍体(因为染色体数目减少了一半)子细胞在减数分裂II中进行另一次细胞分裂,但不进行另一轮染色体复制。两个子细胞中的姐妹染色单体在后期II被核纺丝纤维拉开,产生四个单倍体子细胞。
在有丝分裂中的功能
同源染色体在有丝分裂中的功能与减数分裂中的功能不相同。在每个细胞经历有丝分裂之前,亲体细胞中的染色体会自身复制。但细胞内的同源染色体通常不会联会也不进行基因重组。相反,复制子或姐妹染色单体将沿着中期板排列,然后以与减数分裂II相同的方式分离,即通过核有丝分裂纺锤体在它们的着丝粒处被拉开。即使在有丝分裂期间姐妹染色单体之间确实发生了交叉,也不会产生任何新的重组基因型
在体细胞中 的功能
在大多数情况下,同源配对发生在配子中,但体细胞中也有发生。例如,人类体细胞具有非常严格调节的同源配对(分离成染色体疆域,在发育信号控制下在特定基因位点配对。其他物种(特别是果蝇)同源联会更频繁。在21世纪早期的高通量筛选阐明了体细胞中同源配对的各种功能。
特征表现
为什么同源染色体是一条来自母方一条来自父方?
答:因为在减数分裂以后形成的配子(生殖细胞)中没有同源染色体,所以在受精卵作用后,精子的细胞核和卵子的细胞核融合,进而染色体数加倍,在这以后就又有了同源染色体,其中的一条来自母方而另一条来自父方。
分裂类型
减数分裂
减数分裂(Meiosis)的特点是脱氧核糖核酸复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子(图13-12),通过受精作用又恢复二倍体,减数分裂过程中同源染色体间发生交换,使配子的遗传多样化,增加了后代的适应性,因此减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。减数分裂可分为3种主要类型:
配子减数分裂
也叫终端减数分裂(terminal meiosis),其特点是减数分裂和配子的发生紧密联系在一起,在雄性脊椎动物中,一个精母细胞经过减数分裂形成4个精细胞,后者在经过一系列的变态发育,形成成熟的精子。在雌性脊椎动物中,一个卵母细胞经过减数分裂形成1个卵细胞和2-3个极体
孢子减数分裂
也叫中间减数分裂(intermediate meiosis),见于植物和某些藻类。其特点是减数分裂配子发生没有直接的关系,减数分裂的结果是形成单倍体的配子体(小孢子和大孢子)。小孢子再经过两次有丝分裂形成包含一个营养核和两个雄配子(精子)的成熟花粉(雄配子体),大孢子经过三次有丝分裂形成胚囊(雌配子体),内含一个卵核、两个极核、3个反足细胞和两个助细胞。
合子减数分裂
也叫初始减数分裂(initial meiosis),仅见于真菌和某些原核生物,减数分裂发生于合子形成之后,形成单倍体的孢子,孢子通过有丝分裂产生新的单倍体后代。
其他分裂
此外某些生物还具有体细胞减数分裂(somatic meiosis)现象,如在蚊子美国白灯蛾的肠道中,有一些由核内有丝分裂形成的多倍体细胞(可高达32X),在蛹期又通过减数分裂降低了染色体倍性,增加了细胞数目。
分裂过程
概述
减数分裂由紧密连接的两次分裂构成。通常减数分裂I分离的是同源染色体,所以称为异型分裂(heterotypic division)或减数分裂(reductional division)。减数分裂II分离的是姊妹染色体,类似于有丝分裂,所以称为同型分裂(homotypic division)或均等分裂(equational division)。和有丝分裂一样为了描述方便将减数分裂分为几个期和亚期。
分裂间期
有丝分裂细胞在进入减数分裂之前要经过一个较长的间期,称前减数分裂间期(premeiotic interphase)或前减数分裂期(premeiosis)。
前减数分裂期也可分为G1期、S期和G2期,在G1期和S期把麝香百合的花粉每细胞在体外培养,则发现细胞进行有丝分裂,将G2晚期的细胞在体外培养则向减数分裂进行,说明G2期是有丝分裂向减数分裂转化的关键时期。
和有丝分裂不同的是,脱氧核糖核酸不仅在S期合成,而且也在前期合成一小部分。D. E. Wimber和W. Prensky(1963)认为合线期-粗线期合成大约2%的DNA。Y. Hotta等人(1966)在百合属(Lilium)和延龄草属(Trillium)中发现,粗线期合成大约0.3%的DNA。称为合线期DNA(zyg-DNA)或粗线期DNA(P-DNA)。这些DNA的合成可能与联会复合体的形成有关。
分裂期
1.前期I
减数分裂的特殊过程主要发生在前期I,通常人为划分为5个时期:①细线期(leptotene)、②合线期(zygotene)、③粗线期(pachytene)、④双线期(diplotene)、⑤终变期(diakinesis)。必须注意的是这5个阶段本身是连续的,它们之间并没有截然的界限。
1)细线期:
染色体呈细线状,具有念珠状的染色粒。持续时间最长,占减数分裂周期的40%。细线期虽然染色体已经复制,但光镜下分辨不出两条染色单体。由于染色体细线交织在一起,偏向核的一方,所以又称为凝线期(synizesis),在有些物种中表现为染色体细线一端在核膜的一侧集中,另一端放射状伸出,形似花束,称为花束期(bouquet stage)。
2)合线期:持续时间较长,占减数分裂周期的20%。亦称偶线期,是同源染色体联会的时期,这种配对称为联会(synapsis)。这一时期同源染色体间形成联会复合体(synaptonemal complex,SC)。在光镜下可以看到两条结合在一起的染色体,称为二价体(bivalent)。每一对同源染色体都经过复制,含四个染色单体,所以又称为四分体(tetrad)。
3)粗线期:持续时间长达数天,此时染色体变短,结合紧密,在光镜下只在局部可以区分同源染色体,这一时期同源染色体的非姊妹染色单体之间发生交换的时期。在果蝇粗线期SC上具有与SC宽度相近的电子致密球状小体,称为重组节,与脱氧核糖核酸的重组有关。
4)双线期:联会的同源染色体相互排斥、开始分离,但在交叉点(chiasma)上还保持着联系。双线期染色体进一步缩短,在电镜下已看不到联会复合体。
交叉的数目和位置在每个二价体上并非是固定的,而随着时间推移,向端部移动,这种移动现象称为端化(terminalization),端化过程一直进行到中期。
植物细胞双线期一般较短,但在许多动物中双线期停留的时间非常长,人的卵母细胞在五个月胎儿中已达双线期,而一直到排卵都停在双线期,排卵年龄大约在12-50岁之间。成熟的卵细胞直到受精卵后,才迅速完成两次分裂,形成单倍体的卵核。
在鱼类、两栖动物爬行纲、鸟类以及无脊椎动物的昆虫中,双线期的二价体解尾旋而形成灯刷染色体,这一时期是卵黄积累的时期。
5)终变期:二价体显著变短,并向核周边移动,在核内均匀散开。所以是观察染色体的良好时期。
由于交叉端化过程的进一步发展,故交叉数目减少,通常只有一至二个交叉。终变期二价体的形状表现出多样性,如V形、O形等。
核仁此时开始消失,核被膜崩解,但有的植物,如玉米,在终变期核仁仍然很显著。
2.中期I
核仁消失,核被膜崩解,标志进入中期I,中期I的主要特点是染色体排列在赤道面上。每个二价体有4个着丝粒、姊妹染色单体的着丝粒定向于纺锤体的同一极,故称联合定向(co-orientation)。
3.后期I
二价体中的两条同源染色体分开,分别向两极移动。由于相互分离的是同源染色体,所以染色体数目减半。但每个子细胞脱氧核糖核酸含量仍为2C。同源染色体随机分向两极,使母本和父本染色体重所组合,产生基因组的变异。如人类染色体是23对,染色体组合的方式有2^23个(不包括交换),因此除同卵孪生外,几乎不可能得到遗传上等同的后代。
4.末期I
染色体到达两极后,解旋为细丝状、核膜重建、核仁形成,同时进行胞质分裂。
5.减数分裂间期
在减数分裂I和II之间的间期很短,不进行DNA的合成,有些生物没有间期,而由末期I直接转为前期II。
二、减数分裂II
可分为前、中、后、末四个四期,与有丝分裂相似。
通过减数分裂一个精母细胞形成4个精子。
而一个卵母细胞形成一个卵子及2-3个极体
联会复合体
联会复合体(synaptonemal complex,SC)是减数分裂合线期两条同源染色体之间形成的一种结构,它与染色体的配对,交换和分离密切相关。
SC是同源染色体间形成的梯子样的结构。在电镜下观察,两侧是约40nm的侧生组分(lateral element),电子密度很高,两侧之间为宽约100nm的中间区(intermediate space),在电镜下是明亮区,在中间区的中央为中央组分(central element),宽约30nm。侧生组分与中央组分之间有横向排列的粗约7~10nm的SC纤维,使SC外观呈梯子状。
长期以来人们认为SC将同源染色体组织在一起,使伸入SC的脱氧核糖核酸之间产生重组,但实验证明不仅SC的形成晚于基因重组的启动,而且基因突变不能形成SC的酵母中,同源染色体间照样可以发生交换。一般认为它与同源染色体间交换的完成有关。
磷钨酸染色的SC中央,还可以看到呈圆形或椭圆形的重组节(recombination nodules,RNs),RNs是同源染色体发生交叉的部位,RNs上有基因交换所需要的酶。
从形态学来看,SC形成合线期,成熟于粗线期,并存在数天,消失于双线期。联会复合体的形成与合线期脱氧核糖核酸(Zyg-DNA)有关,在细线期或合线期加入DNA合成抑制剂,则抑制SC的形成。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
研究对象
研究意义
功能
特征表现
分裂类型
减数分裂
配子减数分裂
孢子减数分裂
合子减数分裂
其他分裂
分裂过程
概述
分裂间期
分裂期
联会复合体
参考资料