单模光纤
一种网络传输设备
单模光纤(SingleModeFiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光纤。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导股份色散一为正、一为负,大小也正好相等。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
单模光纤相比于多模光纤可支持更长传输距离,在100Mbps的以太网以至1G千兆网,单模光纤都可支持超过5000m的传输距离。
折射率分布和突变型光纤相似,纤芯直径只有8~10μm,光线以直线形状沿纤芯中心轴线方向传播。因为这种光纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。
概述
"单模光纤"在学术文献中的解释:一般v小于2.405时,光纤中就只有一个波峰通过,故称为单模光纤,它的芯子很细,约为8一10微米,模式色散很小。影响光纤传输带宽度的主要因素是各种色散,而以模式色散最为重要,单模光纤的色散小,故能把光以很宽的频带传输很长距离。
单模光纤具备10micron的芯直径,可容许单模光束传输,可减除带宽及振模色散(Modaldispersion)的限制,但由于单模光纤芯径太小,较难控制光束传输,故需要极为昂贵的激光作为光源体,而单模光缆的主要限制在于材料色散(Materialdispersion),单模光缆主要利用激光才能获得高频宽,而由于LED会发放大量不同频宽的光源,所以材料色散要求非常重要。
从成本角度考虑,由于光端机非常昂贵,故采用单模光纤的成本会比多模光纤电缆的成本高。
特点
单模光纤与多模光纤相比较,芯径细很多,仅为8~10μm。因只传一个模式,无模间色散,总色散小,带宽宽。单模光纤使用在1.3~1.6μm的波长区域,通过对光纤折射率分布的适当设计,并选用纯度很高的材料制备比纤芯大7倍的包层,可在此波段同时实现最低损耗与最小色散。
单模光纤用于长距离、大容量光纤通信系统,光纤局部区域网和各种光纤传感器中。
分类
652单模光纤
满足ITU-T.G.652要求的单模光纤,常称为非色散位移光纤,其零色散位于1.3um窗口低损耗区,工作波长为1310nm(损耗为0.36dB/km)。我国已敷设的光纤光缆绝大多数是这类光纤。
随着光纤光缆工业和半导体激光技术的成功推进,光纤线路的工作波长可转移到更低损耗(0.22dB/km)的1550nm光纤窗口。
653单模光纤
满足ITU-T.G.653要求的单模光纤,常称色散位移光纤(DSF=DispersionShifledFiber),其零色散波长移位到损耗极低的1550nm处。这种光纤在有些国家,特别在日本被推广使用,我国京九干线上也有所采纳。
美国AT\u0026T早期发现DSF的严重不足,在1550nm附近低色散区存在有害的四波混频等光纤非线性效应,阻碍光纤放大器在1550nm窗口的应用。但在日本,将色散补偿技术*用于G.653单模光纤线路,仍可解决问题,而且未见有日本的G.655光纤,似属个谜。
655单模光纤
满足ITU-T.G.655要求的单模光纤,常称非零色散位移光纤或NZDSF(=NonZeroDispersionShiftedFiber)。属于色散位移光纤,不过在1550nm处色散不是零值(按ITU-T.G.655规定,在波长1530-1565nm范围对应的色散值为0.1-6.0ps/nm*km),用以平衡四波混频等非线性效应。
商品光纤有如AT\u0026T的TrueWave光纤,Corning的SMF-LS光纤(其零色散波长典型值为1567.5nm,零色散典型值为0.07ps/nm2*km)以及Corning的LEAF光纤。我国的"大宝实"光纤等。
主要区别
这些都是ITU给光纤规定的标准种类:
G.651是多模光纤
G.652是常规单模光纤,零色散点在1300nm,此点色散最小;同时根据PMD又分为G.652A、B、C、D四种。
G.653是色散位移光纤(DSF),以1550nm为零色散点,原理是通过波导色散进行色散平移,使低损耗与零色散在同一工作波长上。但同时零色散不利于多信道WDM传输,因为当复用的信道数较多时,信道间距较小,这时就会产生一种称为四波混频(FWM)的非线性光学效应,这种效应使两个或三个传输波长混合,产生新的、有害的频率分量,导致信道间发生串扰。如果光纤线路的色散为零,FWM的干扰就会十分严重;如果有微量色散,FWM干扰反而会减小,针对这一现像,科学家们研制了一种新型光纤,NZ-DSF。
G.654光纤是超低损耗光纤,主要用于跨洋光缆,其纤芯是纯二氧化硅,而普通的光纤纤芯要掺锗。在1550nm附近的损耗最小,仅为0.185dB/km,但在此区域色散比较大,约17~20ps/〔nm*km〕,在1300nm波长区域色散则为零。
G.655光纤是非零色散位移光纤(NZ-DSF),分655A、B、C,主要特点是1550nm的色散接近零,但不是零。是一种改进的色散位移光纤,以抑制四波混频
G.656光纤是未来导向光纤,G656的工作波长明显增大,包括S,C和L波段(1460到1625nm)。
G.657光纤,国际电信联盟ITU-T于2006年12月发布了《接入网用弯曲损耗不敏感单模光纤和光缆的特性》的标准建议,即G.657光纤标准。G.657光纤划分成了A大类和B大类光纤,同时按照最小可弯曲半径的原则,将弯曲等级分为1,2,3三个等级,其中1对应10mm最小弯曲半径,2对应7.5mm最小弯曲半径,3对应5mm最小弯曲半径。结合这两个原则,将G.657光纤分为了四个子类,G.657.A1、G.657.A2、G.657.B2和G.657.B3。
区别:
1、单模传输距离远;
2、多模传输带宽大;
3、单模不会发生色散,质量可靠;
4、单模通常使用激光作为光源,贵,而多模通常用便宜的LED;
5、单模价格比较高;
6、多模价格便宜,近距离传输可以。
参数对比
从表中参数可以看出,两种光纤的衰减系数并没有太大差异,G.652光纤的色散系数在1550nm波长为18ps/nm*km,当传输10Gb/s的TDM和WDM系统时,为了增加中继距离,需要介入具有负色散系数的光纤进行色散补偿。G.655光纤1530-1560nm波长区色散通常为1.0-6ps/nm*km,传输相同的10Gb/s系统时,因色散很低,勿需采取色散补偿措施;但G.655光纤因在1550nm处色散较小,其非线性效应比G.652光纤大;G.652与G.655光纤的PMD建议指标相同,实际测试时,G.655光纤PMD指标小于G.652光纤。目前G.655光纤的价格较高,其市场价格约为G.652光纤的1倍。两种光纤的工程应用列于下表。
表中比较表明,对于传输2.5Gb/s的TDM和WDM系统,两种光纤均能满足。对于传输10Gb/s的TDM和WDM系统时,G.652光纤需采取色散补偿措施,并需要对已敷设的光缆进行PMD测试,在满足要求的前提下,才可开通基于10Gb/s的传输系统。G.655光纤不需频繁采取色散补偿措施,但光纤价格偏高。
研制历程
1980年,国际上,包括中国学者都在讨论单模光纤与多模光纤到底哪种更好时,上海科技大学黄宏嘉院士认识到长波长单模光纤具有损耗低、色散小等优点,是远距离大容量通信系统的理想介质。以黄宏嘉院士为首的研究小组于1979年提出开展单模光纤研究的建议。该建议得到了上海市科委的支持,并将“单模光纤研究”列为上海市重点科研项目。至1982年5月进行了研究工作的第二阶段。以上海科学技术大学与上海石英玻璃厂协作,得到了电子23所的支持和合作。于1982年5月由上海市科委主持了由中国9个单位24名专家参加的鉴定工作。鉴定委员会认为,“此次单模光纤科研工作是基础性和开拓性的,不仅填补了中国在这个重要研究领域的空白,而且是以较快的速度赶上国际水平。”
特性参数
①衰耗系数a:其规定与物理含义与多模光纤完全相同,在此不多叙述。
②色散系数D(λ):我们已经知道,光纤的色散可以分为三大部分即模式色散、材料色散与波导色散。而对于单模光纤而言,由于实现了单模传输所以不存在模式色散的问题,故其色散主要表现为材料色散与波导色散(统称模内色散)。综合考虑单模光纤的材料色散与波导股份色散,统称色散系数。色散系数可以这样理解:每公里的光纤由于单位谱宽所引起的脉冲展宽值。因此,L公里光纤由色散引起的脉冲展宽值为:σ=δλ·D(λ)·L(2.17)其中:δλ为光源谱宽σ为根均方展宽值色散系数越小越好。光纤的色散系数越小,就意味着其带宽系数越大即传输容量越大。例如CCITT建议在波长1.31微米处单模光纤的色散系数应小于3.5ps/km.nm。经过计算,其带宽系数在25000MHz·km以上,是多模光纤的60多倍(多模光纤的带宽系数一般在1000MHz·km以下)。
③模场直径d:模场直径表征单模光纤集中光能量的程度。由于单模光纤中只有基模在进行传输,因此粗略地讲,模场直径就是在单模光纤的接收端面上基模光斑的直径(实际上基模光斑并没有明显的边界)。可以极其粗略地认为(很不严格的说法),模场直径d和单模光纤的纤芯直径相近。
④截止波长λc:我们知道,当光纤的归一化频率V小于其归一化截止频率Vc时,才能实现单模传输,即在光纤中仅有基模在传输,其余的高次模全部截止。也就是说,除了光纤的参量如纤芯半径,数值孔径必须满足一定条件外,要实现单模传输还必须使光波波长大于某个数值,即λ≥λc,这个数值就叫做单模光纤的截止波长。因此,截止波长λc的含义是,能使光纤实现单模传输的最小工作光波波长。也就是说,尽管其它条件皆满足,但如果光波波长不大于单模光纤的截止波长,仍不可能实现单模传输。
⑤回损---ReturnLoss:反射损耗又称为回波损耗,它是指出光端,后向反射光相对输入光的比率的分贝数,回波损耗愈大愈好,以减少反射光对光源和系统的影响。
单模传输设备所采用的光器件是LD,通常按波长可分为1310nm和1550nm两个波长,按输出功率可分为普通LD、高功率LD、DFB-LD(分布反馈光器件)。单模光纤传输所用的光纤最普遍的是G.652,其线径为9微米。
光纤波长
1310nm波长的光在G.652光纤上传输时,决定其传输距离限制的是衰减因数;因为在1310nm波长下,光纤的材料色散与结构色散相互抵消总的色散为0,在1310nm波长上有微小振幅的光信号能够实现宽频带传输。
1550nm波长的光在G.652光纤上传输时衰减因数很小,单纯从衰减因数考虑,1550nm波长的光在相同的光功率下传输的距离大于1310nm波长的光下的传输的距离,但是实际情况并非如此,单模光纤带宽B与色散因数D的关系为:B=132.5/(Dl*D*L)GHz
其中L为光纤的长度,Dl为谱线宽度,对于1550nm波长的光,其色散因数如表3为20ps/(nm.km),假设其光谱宽度等于1nm,传输距离为L=50公里,则有:B=132.5/(D*L)GHz=132.5MHz
应用情况
简介
由于现在的光纤多采用塑料做纤芯。成本已经很低了。例如市场上出售的四芯单模光纤就只有2~3元/米,而单模/多模光纤收发器的价格也在300~500之间。所以它的应用成本很低。
过去我们在建设网络时的传统观念是局域网只用双绞线,只有高速连接互联网时才用到光纤,有些企业或是厂矿局域网的范围很大,而且对网络稳定性要求更高,在这里我们就建议使用光纤了,使用光纤的成本不比使用达标的超五类双绞线高多少。而且不必担心雷击,不用考虑局域网的有效距离,大家可以在以后的工作中参考使用。
相关阅读:《光纤连网离你不远,实例讲解光纤局域网应用》
产品选用指南
单模光纤的芯线标称直径规格为(8~10)μm/125μm。规格(芯数)有2、4、6、8、12、16、20、24、36、48、60、72、84、96芯等。线缆外护层材料有普通型;普通阻燃性;低烟无卤型;低烟无卤阻燃型。
当用户对系统有保密要求,不允许信号往外发射时,或系统发射指标不能满足规定时,应采用屏蔽铜芯对绞电缆和屏蔽配线设备,或采用光缆系统。
施工及安装要点
由于光纤纤芯是石英玻璃的,极易弄断,因此在施工弯曲时,决不允许超过最小的弯曲半径。其次,光纤的抗拉强度比电缆小,因此在操作光缆时,不允许超过各种类型光缆抗拉强度。在光缆敷设好以后,在设备间和楼层配线间将光缆捆接在一起,然后才进行光纤连接。可以利用光纤端接装置(OUT)、光纤耦合器、光纤连接器面板来建立模组化的连接。当敷设光缆工作完成,以及在应有的位置上建立互连模组以后,就可以将光纤连接器加到光纤末端上,并建立光纤连接。
其他参见《建筑与建筑群综合布线系统工程验收规范》GB/T50312-2000和《建筑及建筑群综合布线系统工程施工及验收规范》CECS89:97中要求。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
概述
特点
分类
652单模光纤
653单模光纤
655单模光纤
主要区别
参数对比
研制历程
特性参数
光纤波长
应用情况
简介
产品选用指南
施工及安装要点
参考资料