本书较系统地讲述了复变函数论的基本理论和方法。全书共分六章,内容包括:微积分,Cauchy积分定理与Cauchy积分公式,Weierstrass级数理论,Riemann映射定理,微分几何与Picard定理,多复变数函数浅引等。每章配有适量习题供读者选用。本书试图用近代数学的观点和方法处理复变函数内容。例如:用微分几何的初步知识,对Picard大、小
定理给出简捷的证明;强调变换群的概念,利用简单区域上的全纯自同构群证明Poincaré定理;对多复变函数作了简明的介绍。
本书自1996年5月出版后,由于内容新颖、叙述简捷、通俗易懂,深受教师和学生的欢迎。此次重印,作者根据中国科大、
清华大学等几所大学使用此书作为教材以及自己的教学经验和体会,在“重印说明”中对本书的写作意图和数学的统一性作了深刻的阐述。用是地对书中内容作了些小修改,每章后面增补了适量的习题,并更正了书中的印刷错误,使之更好地 为教学服务。