传输线(transmission
谱线)输送电磁能的线状结构的设备。它是电信系统的重要组成部分,用来把载有信息的电磁波,沿着传输线规定的
路由自一点输送到另一点。以横电磁(TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中
电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。
简介
音响系
统中各设备间连接线,其质量会直接影响
音响系统的音质和声音还原质量。传输线对声音信号的影响不仅限于直流
电阻,由于分布参数、趋肤效应、多芯线失真等因素影响,随之而来的涡流损耗和
电磁感应会对音质起到一定的破坏作用,导致不同频率信号通过导线时,
阻抗不尽相同,相移量也有所没。传输线对声音信号的影响取决于
导体导体材质(如铜、
无氧铜、金、铝等)、线的几何结构(如线径、股数、绞合方式、导线外绝缘材料)以及线的技术工艺等多方面。在满足使用要求的前提下,传输线应尽可能短且与设备接触良好,并注意屏蔽和抗干扰问题,尽量减少声音信号损失(包括幅度、频率和
相位三方面损失),常用的传输线有音频屏蔽线、数字线和音箱线等。
方程
定义
又称电报方程,是说明传输线上电压U和电流I之间关系的
导数方程组。按分布参数电路的观点,一小段传输线可等效为由分布
电阻R1(欧/米)、分布
电感L1(亨/米)、分布电导G1(西/米)和分布
电容C1(法/米)等集总元件构成的T型网络(对无耗线,R1=G1=0),实际的传输线表示为各段等效网络的级联。
,
,
则传输线方程可写成
其解U(z)和I(z)都由含因子的两项组成
上标i,r分别表示
单射波与反射波。一般,传输线上的电压和电流各由上述两相反方向的行波合成,形成
驻波分布。
传播常数
描述电压或电流行波沿传输线行进过程中的衰减和相移的参量。通常,它是一个复常数
式中α称为衰减常数,单位是奈/米或分贝/米(1奈/米=8.686分贝/米);β称为相移常数,单位是弧度/米。
对于无耗线(R1=G1=0),有
分别说明行波过程中没有衰减;以及波行进一个波长有2π弧度的
相位延迟。式中μ和ε分别为传输线所在媒质的导磁率和介电常数。
在传输线上行波的速度为
与频率f无关。
对于低损耗线(R1\u003c\u003cωL1,G\u003e\u003c\u003cωC1),近似有\u003e
特性阻抗
传输线上行波传播时的电压与电流之比。通常它也是复
常数对无耗线
它与频率无关,仅取决于线本身的物理参数和几何尺寸,可表征线的“特性”,故称特性阻抗。
由于传输线横截面上
电磁场的瞬时分布与二维静电场、静磁场的分布相似,因而可借助静电场和恒流磁场的方法分别计算分布参数C1和L1,从而算出特性阻抗Z0。通常是只计算C1,利用关系式⑷,由公式Z0=1/υC1算出特性阻抗。
常用的平行双线和同轴线(图1)的特性
阻抗公式为平行线
同轴线
式中εr为同轴线填充介质的相对介电常数。
反射系数
信号从源端经传输线传向终端,当终端接有
负载阻抗ZL≠Z0时,则传向负载的入射波将激起从负载向源方向的反射波。传输线上某点处反射液电压与
单射波电压之比为该点的电压反射系数,简称反射系数,通常是
复数。对无耗线,反射系数Γ=|Γ|,沿线模|Γ|保持不变而幅角ψ呈线性变化。在负载端(反射点),|Γ|与ψ的初始值仅与比值ZL/Z0有关。
的关系为
式中
称为用Z0归一化的阻抗。当负载端
时,Γ(l)=0,线上只有传向负载的入射波,而没有从负载返回的反射波,称该传输线工作在阻抗匹配状态。
电压驻波比
传输线上的反射波与
单射波叠加后形成
驻波,即沿线各点的电压和电流的振幅不同,以1/2波长为周期而变化。电压(或电流)振幅具有最大值的点,称为电压(或电流)驻波的波腹点;而振幅具有最小值的点,称为驻波的波谷点;振幅值等于零的点称为波节点。线上某电压波腹点与相邻波谷点的电压振幅之比称为电压驻波比,简称驻波比;其
倒数称为行波系数。
电压与电流两种驻波曲线在空间上存在90°的
相位差(波谷点位置相差1/4波长),即电压波腹点对应电流波谷点,反之亦然。图3是几种负载情形的电压
驻波图型。ρ为电压驻波比,则电压波腹点处的输入阻抗为ρZ0;波谷点处的输入阻抗为Z0/ρ。
|Γ|=0时,ρ=1;|Γ|=1时,ρ=∞,因此,驻波比ρ常用于描述传输线的工作状态。
阻抗匹配
目的是使传输线向负载有最大的功率转移,即要求
负载阻抗与传输线的特性阻抗
相等,相应地有|Γ|=0(或ρ=1)。如果负载阻抗与传输线的特性阻抗并不相等,就需要在传输线的输出端与负载之间接入阻抗变换器,使后者的输入阻抗作为等效负载而与传输线的特性阻抗相等,从而实现传输线上|Γ|=0。阻抗变换器的作用实质上是人为地产生一种反射波,使之与实际负载的反射波相抵消。在实际问题中,还需要考虑传输线输入端与信号源之间的
阻抗匹配
。
高频馈电系统中的阻抗匹配十分重要,阻抗失配会使输送到负载的功率降低;传输大功率时易导致击穿;且由于输入阻抗的电抗分量随位置而改变,对信号源有频率牵引作用。
应用
传输线不仅用于传送电能和电信号,还可以构成电抗性的谐振元件。例如,长度小于1/4波长的终端短路或开路的传输线,其输入阻抗是感抗或容抗;长度可变的短路线可用作调配元件(短截线匹配器)。又如长度为1/4波长的短路线或开路线分别等效于并联或串联谐振电路,称为谐振线;其中1/4波长短路线的输入阻抗为无穷大,可用作金属绝缘支撑等。此外,还可利用分布参数传输线的延时特性制成仿真线等电路元件。
分类
按传输媒质和结构上的特点,传输线可分为双线传输线、微带传输线、波导管传输线、表面波传输线和光导纤维等类。
4.1双线传输线
由两平行的导电金属线(一般为铜、钢或铝线)构成,传送横电磁波的传输线。按结构又可分为对称型和同轴型两类。我国广泛使用的架空明线、各种对绞电缆和星绞电缆,都属于对称型的双线传输线。中同轴和小同轴电缆则属于同轴型的双线传输线。
随着频率的提高,双线传输线的金属损耗和介质损耗都迅速增加。而且传输线的横向尺寸与波长相比已经不能忽略,对设备的制造工艺和维护标准都提出了更为严格的要求。特别是对称型双线传输线开放式的
电磁场,回路间的耦合也愈为严重。因此传输频率较低。我国的高频对称电缆一般开放频率在252kHz以下的60路载波系统;中同轴电缆一般开放1800路载波通信系统,频率8.5MHz。
4.2微带传输线
用于
微波波段的一种不对称传输线,传输准TEM波。结构的形式较多,性能用途也不相同。标准微带的结构形式,是在较宽的接地金属带上方紧贴一层介质基片,基片的另一侧贴附一条较窄的金属长条。标准微带线是微波
集成电路中常用的一种传输线。
4.3波导管传输线
用于微波波段中由空心导电金属管构成的一种非TEM波传输线。波导管常用紫铜、
黄铜等良导体制成,内壁还常镀有一层导电性能优良的银,使管壁具有很高的
电导率。波导管的形状主要有圆形、矩形和椭圆形等多种。
波导管由于管壁导电面积大,导电率高,因而金属热损耗比较小,也没有辐射损耗(因为场是封闭的)和介质损耗(因为管内没有固体介质)。一般用于厘米波和毫米波段。
4.4表面波传输线
由单根圆形截面的金属
导体构成的波导,又称高-包线。导体表面复有一层某种与内部导体电特性不同的介质材料,可以露天悬挂,导引电磁波沿传输线的表面传输。
4.5光纤传输线
利用光导纤维作传输媒质,引导光线在光纤内沿光纤规定的途径传输的传输线。根据传输模式的不同,可分为单模光纤与多模光纤两类。光纤传输线具有通信容量大、传输距离远、不受电磁干扰、抗腐蚀能力强、重量轻等许多技术上的优点,是本世纪70年代出现的一种受到广泛欢迎的传输线。
特性
5.1传输线的均匀性
传输
导体横截面的形状、使用的材料、导体间的间隔和导体周围的介质,在线路的全部长度上都保持均匀不变的,称为均匀传输线。否则便叫做不均匀传输线。均匀传输线的一次参数均匀地分布于整个传输线上,其数值不随考察点的位置而变化。
传输线在制造和建筑过程中可能出现的偏差,都规定有必要的允许范围。如果出现的不均匀性偏差不超过这些规定,都可以看作是均匀传输线。
5.2性能参数
通常用衰减系数、相移系数、特性
阻抗,或与之相对应的其它参数来描述。其数值仅与传输线的结构、几何尺寸、制造传输线使用的材料、工作波长(或工作频率)有关。
串扰
串扰(Crosstalk)也称“交调干扰”,主要源自两个相邻
导体之间所形成的互感与互容,如图所示。串扰会随着印制板的走线布局密度增加而变得越来越严重,尤其是长距离的`
总线结构和频率较高且强度较大的信号线,更容易发生串扰现象。这种现象是经由互感和互容这样的
寄生参数,将能量由一个传输线耦合到相邻的传输线上而造成的,因此串扰实际上是一种典型的EMI问题。
串扰包括
电容耦合和
电感耦合,电容耦合(容性串扰)通常是因为走线位于另一走线上方或参考层上方。这种串扰在平行线之间的影响要小一些,两条较长的布线之间会有相互电容效应。当其中一条线上的电压发生变化时,在另一条线上就会产生容性串扰。即会出现一个小的正脉冲,如同电源电压变化而诱发的;电感耦合(感性串扰)是由于布线的电感造成的天线效应及信号间的公共
阻抗对不同回路的影响。当一条导线的
磁场在相邻信号上感应出信号时,就会发生串扰现象。只要有开关电流引起的磁场,就会产生瞬时耦合电压。通常,微带线的串扰较带状线严重。
根据串扰所发生的位置,可将串扰分为前向串扰和后向串扰。信号从源端传输到负载端,将发生前向串扰;如果信号被反射到源端,就会发生后向串扰。互容性耦合对前向串扰来说是正,而对后向串扰来说为负。在一般情况下,后向串扰对系统的影响要比前向串扰大。
串扰不仅会出现在时钟或周期信号线上,同样会出现在数据、地址、控制和LO走线中,因此必须尽量避免。串扰值与介电常数、线宽和间距有关。
为在PCB板中避免串扰现象的发生,推荐以下布线建议。
⑵尽可能减小布线的长度。
⑶避免互相平行的走线布局,并保证走线间有一定的间隔,从而减小走线间的耦合。
⑷降低走线的阻抗和信号的驱动电平。
⑸尽量隔离时钟及高速互连等EMI较差的信号。
⑹减小器件间的距离,器件布局合理。
⑺敏感的器件尽量远离I/O互连接口、时钟及易受数据干扰和耦合影响的区域。