规范场论
一类物理理论
规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常见的例子为杨-米尔斯理论。物理系统往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论等效原理的一个推广。
理论简介
规范“对称性”反映了系统表述的一个冗余性。
规范场论在物理学上的重要性,在于其成功为量子电动力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。这套理论精确地表述了自然界的三种基本力的实验预测,它是一个规范群为的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。
发展简史
最早包含规范对称性的物理理论是詹姆斯·麦克斯韦的电动力学。麦克斯韦在他的论文里特别提出,这理论源自于威廉·汤姆森于1851年发现的关于磁矢势的数学性质。但是,该对称性的重要性在早期的表述中没有被注意到。戴维·希尔伯特假设在坐标变换下作用量不变,由此推导出爱因斯坦场方程时,但它也没有注意到对称性的重要。之后,赫尔曼·外尔试图统一广义相对论和电磁学,他猜想“Eichinvarianz”或者说尺度(“规范”)变换下的“不变性”可能也是广义相对论的局部对称性。后来发现该猜想将导致某些非物理的结果。但是在量子力学发展以后,外尔、弗拉基米尔·福克和弗里茨·伦敦实现了该思想,但作了一些修改(把缩放因子用一个复数代替,并把尺度变化变成了相位变化—一个U(1)规范对称性),这相应于带电荷的量子粒子其波函数受到电磁场的影响,给定了一个漂亮的解释。这是第一个规范场论。沃尔夫冈·泡利在1940年推动了该理论的传播。
1954年,为了解决一些基本粒子物理中的巨大混乱,杨振宁和罗伯特·米尔斯引入非交换规范场论,来建构将核子绑在原子核中的强相互作用的模型。(Ronald Shaw,在阿卜杜勒·萨拉姆指导下,在他的博士论文中独立地引入了相同的概念。)通过推广电磁学中的规范不变性,他们试图构造基于(非交换的)SU(2)对称群在同位旋质子和中子对上的作用的理论,类似于U(1)群在量子电动力学的旋量场上的作用。在粒子物理中,重点在于量子化规范场论。
该思想后来被发现能够用于弱相互作用的量子场论,以及它和电磁学的电弱统一理论中。当人们意识到非交换规范场论能够导出渐近自由的时候,规范场论变得更有吸引力,因为渐近自由被认为是强相互作用的一个重要特点—因而推动了寻找强相互作用的规范场论的研究。这个理论称为量子色动力学,是一个SU(3)群作用在夸克的色荷上的规范场论。标准模型用规范场论的语言统一了电磁力、弱相互作用和强相互作用的表述。
1970年代迈克尔·阿蒂亚爵士提出了研究经典杨-米尔斯方程的数学解的计划。1983年,阿蒂亚的学生西蒙·唐纳森在这个工作之上证明了光滑4-流形的可微性分类和同胚性分类非常不同。麦可·弗里德曼采用唐纳森的工作证明奇异R的存在,也就是,欧几里得4维空间上的奇异导数结构。这导致对于规范场论作为数学理论的兴趣逐渐增加,独立于它在基础物理中的成功。1994年,爱德华·威滕和Nathan Seiberg发明了基于超对称的规范场技术,使得特定拓扑不变量的计算成为可能。这些数学上的成果也导致了对该领域的新兴趣。
例子
电路中接地的定义是规范对称性的一个例子;当线路所有点的电势升高相同的值时,电路的行为完全不变;因为电路中的电压不变。该事实的一个常见释例是栖息在高压电线上的鸟不会遭电击,因为鸟对地绝缘。
这称为整体规范对称性。电压的绝对值不是真实的;真正影响电路的是电路组件两端的电压差。接地点的定义是任意的,但一旦该点确定了,则该定义必须全局的采用。
相反,如果某个对称性可以从一点到另一点任意的定义,它是一个局域规范对称性。
数学形式化
规范理论通常用微分几何的语言讨论。数学上,一个规范就是某个主丛的(局部)截面的一个选择。一个规范变换也就是两个截面间的变换。
注意,虽然规范理论被联络的研究占据了大部分(主要是因为它主要在高能物理中研究),联络这个概念一般而言其非规范理论的中心概念。事实上,一般规范理论的一个结果表明规范变换的仿射表示(也就是仿射模)可以分类到一种满足特定属性的节丛的截面。有些表示在每一点共变(物理学家称其为第一类规范变换),有些表示象联络形式一样变换(物理学家称其为第二类规范变换,一种仿射表示),还有其它更一般的表示,例如BF理论中的B场。当然,我们可以考虑更一般的非线性表示(实现),但那很复杂。但是,非线性σ模型的变换是非线性地,所以它们也有用处。
若我们有一个主丛P其底空间是空间或时空而结构群是一个李群,则P的截面组成一个规范变换群的主齐性空间。
我们可以在该主丛上定义一个联络(规范联络),这可以在每个配丛上产生一个共变导数∇。若我们选择一个局部标架(截面的局部基),我们就可以用联络形式A表示这个共变导数,一个值为李代数的1-形式,在物理学中称为规范势,它显然不是内在性质,而是一个依赖于标架的选择的量。从这个联络形式,我们可以构造曲率形式F,这是一个值为李代数的2-形式,这是一个内在量,定义为
其中d代表外微分而代表楔积。
无穷小规范变换形成一个李代数,可以被一个光滑李代数值的标量,ε所刻画。在这样一个无穷小规范变换下,其中是李括号。
理论量子化
专用来量子化任何量子场论的方法也可用来量子化规范理论。但是,因为规范约束(参看上面的数学表述一节)的微妙性,会出现很多在其他场论不存在的技术问题,待为解决。同时,规范理论的更丰富的结构简化了一些计算:例如Ward恒等式联系了不同的重整化常数
方法目标
第一个量子化的规范理论是量子电动力学(QED)。为此发展的最初的方法涉及规范固定和施行标准量子化。Gupta-Bleuler方法也被发展出来用于处理这个问题。非交换规范理论用很多不同的方法处理。量子化的方法在量子化条目有介绍。
量子化的要点,在于能够计算理论所允许的各种过程的量子振幅。技术上,它们简化为在真空态下的特定相关系数函数的计算。这涉及到理论的重整化。
当理论的变动耦合足够小时,所有需要计算的量可以用微扰理论计算。设计用于简化这样的计算的量子化方案(例如标准量子化)可以称为微扰量子化方案。
但是,在多数规范理论中,有很多有趣的问题是非微扰的。设计用于这些问题的量子化方案可以称为非微扰量子化方案(像是格点规范场论)。这样的方案的精确计算经常需要超级大量地计算,因而目前比其他方案的发展要少。
反常现象
一些理论经典的对称性在量子理论中不再成立—这个现象称为一个反常。最出名的包括:
共形反常,它导致了一个变动耦合常数。在QED中,这导致了列夫·达维多维奇·朗道奇点(Landau pole)。在量子色动力学(QCD)中,这导致渐近自由。
手征反常,出现在费米子手性或者向量场论中。这通过瞬子的概念而和拓扑有紧密的关联。
在QCD中,这个反常导致了π介子衰变成为两个光子。
规范反常,在任何自洽的物理理论中必须消去。在电弱理论中,这个消去要求夸克和轻子数量相等
参看理论
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
理论简介
发展简史
例子
数学形式化
理论量子化
方法目标
反常现象
参看理论
参考资料