泊松方程(
法语:Équation de
西莫恩·泊松)是数学中一个常见于静电学、机械工程和理论物理的偏
导数方程式,因
法国数学家、
几何学家及物理学家泊松而得名的。
在这里 △代表的是
皮埃尔-西蒙·拉普拉斯算符(也就是哈密顿算符▽的平方),而 f 和 φ 可以是在
流形上的
实数或复数值的
方程。当流形属于欧几里得空间,而拉普拉斯算子通常表示为,因此泊松方程通常写成在三维直角
坐标系,可以写成
泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考screened
西莫恩·泊松 equation。现在有很多种数值解。像是relaxation method,不断回圈的
代数法,就是一个例子。
泊松首先在无
引力源的情况下得到泊松方程,(即拉普拉斯方程)。当考虑引力场时,有(f为引力场的质量分布)。后推广至
电场磁场,以及热场分布。该
方程通常用格林函数法求解,也可以分离变量法,特征线法求解。
在静电学很容易遇到泊松方程。对于给定的f找出φ是一个很实际的问题,因为我们经常遇到给定电荷密度然后找出
电场的问题。在
国际单位制(SI)中:
此 代表
电势(单位为
伏特),是电荷体密度(单位为库仑/立方米),而 是真空电容率(单位为法拉/米)。