李锐,中国
清代数学家。字尚之,号四香。江苏元和(今
苏州市)人。清乾隆三 十三年十二月八日(1769 年 1 月 15 日)生;
爱新觉罗·颙琰二十二年六月三十日(1817 年 8 月 12 日)卒。数学、
天文学。
字尚之,号四香。江苏元和(今苏州)人。曾受业于
钱大昕门下,后入阮元幕府,整理数学典籍。实际主持《畴人传》的编写工作。著有《弧矢算术细草》、《勾股算术细草》、《方程新术草》,阐发中国古代数学的精粹。还曾对多部历法进行注释和数理上的考证,著成《日法朔余强弱考》。
李锐,字尚之,
元和诸生。幼开敏,有过人之资。从书塾中检得算法统宗,心通其义,遂为九章、八线之学。因受经于钱大昕,得中、西异同之奥,于古历尤深。自三统以迄授时,悉能洞澈本原。
尝谓:“三统,世经称殷术,以
刘奭初元二年为纪首,是年岁在甲戌。推而上之,一千五百二十岁而岁值甲寅为元首,又上四千五百六十年而岁复甲寅为
上元。以此积年,用四分上推,太初元年得至朔同日,而中馀四分日之三,朔馀九百四十分之七百五,故太初术亏四分日之三,去小馀七百五分也。《
汉书》载三统而不著太初,其实一月之日,二十九日八十一分日之四十三,是日法、月法与三统同。
贾逵称太初术斗二十六度三百八十五分,是统法周天又与三统同。盖四分无异于太初,而太初亦得谓之三统。
郑注召,周公
居摄五年二月三月,当为一月二月,不云正月者,盖待治定制礼,乃正言正月故也。江徵君声、王光禄鸣盛以为据洛诰十二月戊辰逆推之,其说未核。今案郑君精于步算,此破二月三月为一月二月,以纬候入数,推知上推下验,一一符合,不仅检勘一二年间事也。”
因据诗大明疏,郑注尚书
周文王受命,
武王伐纣时日皆用殷历甲寅元,遂从文王得赤雀受命年起,以乾凿度所载之积年推算,是年入戊午蔀,二十九年岁在戊午,与
刘歆所说殷历
周公六年始入戊午蔀不同。谓文王受命九年而崩,崩后四年武王克殷,后七年而崩,明年周公摄政元年,较郑少一年。又载召诰、洛诰俱摄政七年事,其年二月乙亥朔,三月甲辰朔,十二月戊辰朔,并与郑不合。乃以推算各年及一月二月,排比干支,分次上下,著召诰日名考,此融会古历以发明经术者也。
当是时,大昕为当代通儒第一,生平未尝亲许人,独于锐则以为胜己。大昕尝以太乙统宗宝鉴求积年术日法一万五百岁,实三百八十三万五千四十八分二十五秒为疑。锐据宋同州王易学,谓每年于三百六十五日二千四百四十分之外,有终于五分者,有终于六分者,有终于五六分之间者。终于五分者,
五代十国王朴钦天历是也,以七千二百为日法。终于六分者,近年万分历是也,以一万分为日法。终于五六分之间者,
景祐历法载于太乙遁甲中是也,以一万五百分为日法,此暗用授时法也。试以日法为一率,岁实为二率,授时日法一万为三率,推四率,得三百六十五万二千四百二十五分,即授时之岁实也。探本穷源,一言破的。
近世历算之学,首推吴江王氏锡阐、
宣城市梅氏
文鼎,嗣则
休宁县戴氏震亦号名家。王氏谓土盘
历元在唐武德年间,非开皇己未;梅氏谓回回历实用
洪武甲子为元,而之于
开皇己未。其算宫分,虽以开皇己未为元,其查立成之根,则在己未元后二十四年,二说并同。
戴氏谓
回族历百二十八年闰三十一日,是每岁三百六十五日之外,又馀百二十八分日之三十一也。以万万乘三十一,满百二十八而一,得二千四百二十一万八千七百五十,地谷所定岁实三百六十五日二十三刻三分四十五秒,通分内子以万万乘之,满日法而一,亦得二千四百二十一万八千七百五十,与梅氏疑问所云合。是三家所论,未尝不确知灼见,然均未得其详。锐据明史历志、回回本术,参以近年瞻礼单,精加考核,谓回回历有太阳年,彼中谓为宫分;有太阴年,彼中谓为月分。宫分有宫分之元,则
开皇己未是也;月分有月分之元,则唐武德壬午是也。自开皇己未至
洪武甲子,积宫分年七百八十六,自
武德壬午至洪武甲子,积月分年亦七百八十六,其惑人者即此两积年
相等耳,因著回回历元考。有求宫分
白羊座一日入月分截元后积年月日法,以为不明乎此,虽有立成,不能入算也。稿佚未刊。
梅氏未见古九章,其所著方程论,率皆以臆创补,然又于西学,致悖直除之旨。锐寻究古义,探索本根,变通简捷,以旧术列于前,别立新术附于后,著
方程新术草,以期古法共明于世。古无天元一术,其始见于元
李冶测圆海镜、益古演段二书,元
郭守敬用之,以造授时历草,而明学士
顾应祥不解其旨,妄删细草,遂致是法失传。自梅文穆悟其即西法之借根方,于是李书乃得郑重于世。其有原术不通,别设新术数则,更于梅说外辨得天元之相消,有减无加,与借根方之两边加减法少有不同。
且不满
顾姓所著之句股、弧矢两算术,谓:“弧矢肇于九章方田,
北宋沈括以两矢幂求弧背,元李冶用三乘方取矢度,引伸触类,厥法详。顾氏如积未明,开方徒衍,不亦乎?”爰取弧矢十三术,入以天元,著弧矢算术细草。并仿演段例,括句股和较六十馀术,著句股算术细草,以导习天元者之先路。
又从同里顾千里处得
秦九韶数学九章,见其亦有天元一之名,而其术则置奇于右上,定于右下,立天元一于左上。先以右上除右下,所得商数与左上相生,入于左下。依次上下相生,至右上末后奇一而止,乃验左上所得以为乘率。与李书立天元一太极上,如积求之,得寄左数与同数相消之法不同。因知秦书乃大衍求一中之又一天元,秦与李虽同时,而宋元则南北隔绝,两家之术,无缘流通,盖各有所授也。
锐尝谓:“四时成岁,首载虞书,五纪明历,见于洪范。历学诚致治之要,为政之本。乃通典、通考置而不录,
邢云路虽撰古今律历考,然徒援经史,以侈卷之多。梅氏有欲撰历法通考之议,卒未成书。因更网罗诸史,由
黄帝、
颛顼、夏、殷、周、鲁六历,下逮元、明数十馀家,一一阐明义蕴,存者表而章之,缺者考而订之,著为司天通志,俾读史者启其扃,治历者益其智。”惜仅成四分、三统、乾象、
沈阳市、占天五术注而已。馀与开方说皆属稿未全。
开方说三卷,锐读秦氏书,见其于超步、退商、正负、加减、借一为隅诸法,颇得古九章少广之遗,较梅氏少广拾遗之无方廉者,不可以道里计。盖梅氏本于同文算指、西镜录二书,究出自西法,初不知立方以上无不带从之方。锐因秦法推广详明,以著其说。甫及上、中二卷而卒,年四十有五。其下卷则弟子
黎应南续成之。