磁化水是一种被
磁场磁化了的水(水的磁化特征非常微小)。分天然磁化水和人工磁化水。天然磁化水或产地相对地磁较强或
铁矿较多,地磁产生的磁化水使用周期较短,不宜长周期商用,铁矿磁场强度超过6000高斯时,天然磁化水的使用周期可达25年。人工磁化水是通过
磁化器产生的,在工业、农业、医保等领域有广泛的应用。但是水是一种弱磁质,从水离开磁场的那一刻起,就不易长期带磁了(
地球就是最大的磁场)。自来水(必须是含有多种物质的导电的低
电阻率的水),必须以一定的流速垂直切割永磁(
钕铁硼)磁力线,进而产生
电能和动能。(改变
活化分子参加化学反应最低限度的能量。)即活化能改变。
根据卫生部2005年第10号公告,涉水产品不得宣称有保健作用。
产生
磁化水是通过磁化器产生的。而
磁化器是一种
流体磁化装置
磁铁固定组装的结构,外部为金属壳,两端为高密度精细
机械加工而成的
螺丝螺母。内部其主要是在一组经计算机仿真计算呈对称可对接组合并在其内装置有磁铁块的导
磁层,将其置入模具中以软质塑料加以包复,进而使磁铁块与导磁层形成被包复一体状态而构成一磁化
单体,并在其磁铁块与磁铁块中间形成间隙,间隙为流水通道。三大部分组成磁化器。
应用
磁化水在工业、农业和医疗等领域有广泛的应用。
在工业上,人们最初只是用
磁场处理少量的锅炉用水,以减少
水垢。磁化水已被广泛用于各种高温炉的冷却系统,对于提高冷却效率、延长炉子寿命起了很重要的作用。许多化工厂用磁化水加快化学反应速度,提高产量。建筑行业用磁化水搅拌混凝土,大大提高了混凝土强度。纺织厂用磁化水褪浆,印染厂用磁化水调色,都取得了很好的经济效益。
在农业上,用磁化水浸种育秧,能使种子出芽快,发芽率高,幼苗具有株高、茎粗、根长等优点;用磁化水灌田,可使土质疏松,加快有机肥分解,刺激农作物生长。通过实践人们发现,常浇磁化水的大豆、玉米等农作物和萝卜、黄瓜等蔬菜,产量可提高10-45%,水稻、小麦、油菜等作物可增产11-18%。此外,有些畜牧场用磁化水喂养家禽家畜,可使禽畜疾病减少、增重快。
水经磁化后,水性质发生一系列物理和化学变化,
氢键角由105°变成103°,水由原来的13—18个大分子团变成5—6个小分子团。水的渗透力、
溶解度、
表面张力增强,水中的CaCO3、
碳酸镁在蒸煮过程中分解生成较松软的Ca(HCO3)2、Mg(HCO3)2,它们不易在壁上积存,从而达到除垢的效果。
永久磁体产生的超高强磁场,在不改变水原有的化学成份条件下,使水中矿物质的物理结构发生变化。
磁场3000GS—5000GS以上,让普通水以一定流速,沿着与磁力线垂直的方向切割,通过一定强度的磁场,普通水就会变成磁化水。磁化水有种种神奇的效能,原来缔合链状的大分子,断裂成单个
小分子,水分子偶极距发生偏转。水中溶解盐类的正负离子(垢分子)被单个水分子包围,使水中的钙、镁等结垢物的针状结晶改变为粒状结晶体,相互粘附与聚积特性受到了破坏,从而在受热面或管理壁上不结硬垢,粒状结晶体则随排污孔排出,同时由于水分子偶极距增大,使其与盐类正负离子吸引力增大,使受热炉壁、管壁上原有的旧垢逐淅开裂、疏松、自行脱落。
洗衣服——去污力强
危害
市面上兴起饮用磁化水,因为磁化水对人体有诸多的保健作用,许多老年人也经常饮用,但根据中华人民共和国国家卫生和计划生育委员会(卫生部)2005年第10号公告,涉水产品不得宣称有保健作用。
目前已有很多相关论文证明磁化水对生物确实有不同的机理作用。发展早在十三世纪,人们已经注意到磁化水的医疗作用。1945年
比利时韦梅朗应用磁化水减少锅垢获得成功并申请了专利。该技术由于装置简单,不需要任何
化学试剂而被
美国、
日本和
苏联广泛应用并得到发展。中国的磁化水研究开始于六十年代初,以前由于
化学法水质
稳定剂技术的迅速发展,使得磁水器应用推广较慢,这一技术又重新获得重视。应用对象已经涉及到建材、化工、冶金、农业、医学等各个领域。在
工业锅炉的除垢防垢、油田的防蜡降粘等方面、医学上的磁疗等领域中的应用取得了一定的成果。如何将磁化效应与环境污染治理技术结合起来,提高污水的处理效果已逐渐引起人们的兴趣。装置能制备磁化水的装置称为磁水器。按
磁场形式的方式可将磁水器分为永磁式和电磁式两种;按磁场位置又可将磁水器分为内磁式和外磁式两种。永磁式和电磁式磁水器在间隙磁场强度相同的情况下效果相同,但各有特点。永磁式磁水器的最大优点是不需能源,同时结构简单,操作维护方便,但其磁场强度受到磁性材料和充磁技术的限制,且存在随时间的延长或水温的提高而
退磁的现象。电磁式磁水器的优点是磁场强度容易调节,而且可以达到很高的磁场强度,同时磁场强度不受时间和温度影响,稳定性好,但其需要外界提供激磁电源。与内磁式磁水器相比,外磁式磁水器可能具有更大的优越性,其主要优点是检修时不必停水及拆卸管道,也不易引起磁
短路现象。目前国内已有四项关于磁水器的专利,这些专利通过选用不同的磁性材料以及水流的通路形式来达到使水磁化的目的。如图1所示的磁化水装置外型为管状,采用不锈钢管制作,两端带法兰盘可与管道直接相连。磁化水装置内部采用两组N,S极相对的特殊合金永磁材料制成的磁棒,按照N-S,N-S排列,磁场能量很高,可高达6000高斯,使用期限为25年,磁场强度衰减率为3%,由于磁化装置使用的是永久磁性材料,无须外加电源,不耗
电能。结构简单,不需要做任何调整,也不需要特殊的保养与维护,而且装置安装十分方便,并且不占地。原理磁化对水性质的影响机理的几个假设和推论磁化只是单纯的物理过程,不是软化过程。一般认为水系统进行磁处理主要是加快了溶液内部的结晶作用,从而使盐类在受热面上的直接结晶和坚硬沉积大大减少,起到防垢的作用。研究表明,
磁场的阻垢效果同磁场强度、溶液过饱和度、流速及溶液中各种离子等均有密切的关系。另外,还有一种说法认为磁处理改变了水本身的结构,从而改变了一些性状。从这两方面同时考虑,主要有以下的几个假设和推断。⑴洛仑兹力作用:水与磁流的相互移动,能够产生感应电流,在洛仑兹力的作用下,弱极性的水分子和其他杂质的带电离子作反向运动。该过程中,正
阴离子或颗粒相互碰撞形成一定数量的“离子缔合体”,这种缔合体具有足够的稳定性,在水中形成了大量的结晶核心,以这些
晶体为核心的悬浮颗粒可以稳定的存在于水中。⑵
极化作用:
磁场的极化作用使盐类的结晶成分发生了变化。
微粒子极性增强,凝聚力减弱,使水中原有的较长的缔合分子链被截断为较短的缔合分子链和带电离子的变形,破坏了离子间的
静电吸引力,改变了结晶条件。形成分散的稳定小晶体。⑶磁滞效应:磁场引起水中盐类分子或离子的磁性
力偶的磁滞效应,因而改变了盐类在水中的溶解性,同时使盐类分子相互间的
亲和性(结晶性)消失,防止大晶体的结晶。⑷磁
力矩重新取向:在一定
基团反应中,磁场影响在基团中成对的磁力矩重新取向,通过这样的中间机理而影响其他化学反应。
化学动力学发生了变化,反应结果中新得到的产品间的比例关系也发生了变化。⑸
氢键变形:
磁场对水的偶极分子发生定向
极化作用后,
电子云会发生改变,造成氢键的弯曲和局部断裂,使单个水分子的数量增多。这些水分子占据了溶液的各个空隙,能抑制
晶体形成。并使水的整体性能发生变化。⑹活化能改变:磁场的的影响与系统的转化有联系。虽然水在磁化时获得的能量很少,但在系统中开始和终结之间存在一个“能障”为克服这种能障必须向系统输送相应的能量以触发活化能。磁场短时间的作用起着“
催化”水系活化能改变的作用,最终导致整个系统性质的变化。
影响
对水体生物效应的影响
1.磁化处理对
藻类初级生产能力的影响及机理。实验表明,经过磁化的水体中藻类的生产能力明显高于没有处理的水体中的藻类。藻类属于光合自养型微生物,磁化处理引起其
光合作用的生物效应,可以从以下几个方面进行解释。第一,光合自养微生物在
无机化合物环境中吸收
无机盐,利用光能同化CO2和H2O合成自身物质。而水体磁化可以使BOD,COD降低,使部分
有机化合物矿化,矿化程度高,有利于藻类的生长。第二,磁化处理导致水体的光学性质发生变化,经过磁化处理的水比未处理的水对光的吸收率高30%,水体透光性的改善,保证了光合
自养生物的能源。这是磁化处理引起
藻类迅速生长的原因之一。第三,磁化水的硬度、pH值、
电导率都明显的高于非磁化水,无机盐在磁化水中可以较好的溶解,这有利于藻类对营养盐类的吸收。第四,磁化处理后的污水,能引起
生物膜渗透性的增加,从而改善了藻类对营养物质的吸收,促进藻类的生长和生产能力的增加。
2.磁化处理对水中异养细菌总数的影响异养型细菌是以
有机化合物作为能源和碳源的一大类微生物,它的总数随水中有机物浓度的升高而升高,所以水中
异养菌总数可间接反映水中有机物的污染的程度及水的净化程度。污水经过不同强度
磁场的处理后,水中的细菌总数均明显下降。其原因机理还没有完全清楚,初步认为:第一,在磁场的直接作用下,引起水体BOD,COD的降低,使异养生物的能源和C素营养物质减少,导致水体异养菌的死亡速度大于增殖速度,于是出现负增长现象。第二,磁场力直接作用于细菌细胞内的水和酶,使酶
钝化或失活。所以污水磁化处理以后,不仅直接改善其耗养特性的作用,而且磁化后的水体具有新的生物特性。
处理
有机废水处理是当前污染治理的一个普遍问题,传统方法有
活性污泥法、
生物膜法、
厌氧反应器法、
生物滤池法等。前两种方法是目前二级处理厂应用最广泛的方法,其优点是技术比较成熟,运行稳定,出水可达允许排放标准,但缺点也很突出,基建投资大、运行费用高昂,尤其运行费之高,使许多单位望而生畏,无力负担如此之高的运行费用,因此,常常对污水不加处理而直接排入江河湖海。
淮河1994年发生的流域性污染灾害,就是传统
污水处理模式费用太高所带来的直接后果。为实现
可持续性发展战略,中国的
国情要求我们必须开发一种投资少、效率高、运行费用低的污水处理技术。针对这一实际,我们在90年代初,根据磁化水能改变水的一些物理特性,改善生物机能、促进生物生长、提高农业、水产产量和治疗保健等经验,开展磁化—人工生态系统方法处理和利用有机
废水的研究⑺,近10年的大量实验研究和初步应用证明,这一方法是行之有效的,实际应用是成功的,有必要广泛推广,并在实用中进一步完善,以保持社会经济
可持续发展的良性循环。⑴去除COD的效应与分析在水中有氧的情况下,通过改变磁感应强度、水温、磁化流速等对各种污水进行了一系列实验,结果表明:水温对污水瞬间通过
磁化器直接去除COD没有影响。磁化流速2.5m/s时最好,这时对形成核磁共振比较有利,磁化去除COD的能力较强。常温下磁化流速2.5m/s左右,磁感应强度0.262~0.315T下,上述各类污水的COD直接去除率平均医院污水为25.4%,印染
废水为21.2%,城镇污水为16.4%(磁化流速为2.5m/s时为20.0%)、橡胶业废水为11.3%,造纸废水为8.1%,葡萄糖水为17.8%,淀粉水为11.1%,
氨水为8.1%。另外,为查明瞬间磁化直接使COD减少的原因,还对
纯水、自来水和城镇污水磁化前后的溶解氧进行测试。常温下磁化流速2.0m/s,最佳磁感应强度0.315T,4组去离子水磁化前后的溶解氧浓度不变,磁处理对溶解氧无影响;,5组自来水磁化后溶解氧略有降低,平均减少4.1%;12组城镇污水,磁化后溶解氧平均减少24.7%。这种瞬间磁化使污水
有机化合物降解和溶解氧减少的现象,称磁处理污水的直接效应。这一作用并非水中微生物酶引起的有机物分解,也非磁化使水中有机物分子的
化学键断裂,而是磁处理引起核磁共振激活了水中的溶解氧,促使部分有机物氧化分解。这可从三个方面来分析:一是上述实验中,葡萄糖、水、淀粉水、
氨水均为
蒸馏水配制,其中没有微生物,显然瞬间磁化使污水COD降低并非微生物酶的作用;二是水和有机物分子的化学键断裂,需要消耗相当大的能量,如水分子的
氢键断裂需4~6千卡/克分子的能量,如此之低的磁感应强度所提供的能量很小,无法使化学键断裂;最后,B帕特罗夫的实验一定程度上证实了上述论断,他使有溶解氧的水连续从感应
磁场中通过,水中则产生5×10-5%的
过氧化氢,这是一种很强的
氧化剂,可使水中的
有机化合物直接氧化分解。另外,我们还做了对污水多次连续反复磁化的实验,如图2,可见随着磁化次数的增加,每次去除COD的比率急剧变小,并趋于水平。因此,将磁处理技术应用于实际时,应使磁处理器间水流有一段时间的恢复过程。经验表明,水力滞留时间约2~3d以上为佳。
厌氧条件下磁化对提高水中有机物分解也有很好的效果,且更为显着。我们取4组城镇生活污水做实验,温度保持在40℃,最佳磁感应强度仍为0.315~0.368T,厌氧培养10d测试COD,表明磁化使COD的去除率提高21%~28%,平均为24.5%。其效果即使肉眼也能清楚看出,但机理尚需进一步研究。⑵水磁处理生态效应及间接净化影响外加
磁场对生物影响称生物磁效应,可分为
生物分子效应、
细胞效应、组织器官效应及整体效应,例如病毒为单纯的大分子微生物、细菌、真菌基本上为
单细胞微生物、
原生动物界、高等生物为不同功能器官所构成,其组织器官又为细胞组成。污水中生物种类繁多,构造与功能各异,它们通过某一强度的磁场时,受到的影响也很不相同。从整体上说,有些被抑制,甚至死亡;有些被激活,加快
新陈代谢和生长,间接上提高了净化污水的作用。对此,做了以下几个方面的系列实验和分析:(a)污水磁化具有很强的灭菌作用。磁感应强度0.315~0.420T下,磁化流速2.0~2.5m/s,3组水样的情况基本一致,灭菌率为74%~81%。但连续反复磁化,灭菌率则提高不大,说明有些种类的菌群能够抵御
磁场的作用,甚至激活其代谢能力,会更快地生长和降解
有机化合物。磁化处理灭菌原因,可归纳为⑺:一是在磁场的直接作用下,引起BOD、COD降低,使异养微生物的能源和C素营养物质减少,导致水体
异养菌死亡速度大于增殖速度,于是出现负增长现象,二是磁场力直接作用于细菌细胞内的水和酶,使酶
钝化或失活。而BOD数值的降低是细菌总数减少的反映,一方面在外加磁场直接作用下,BOD随COD指标的降低而降低,另一方面,在外加磁场作用下,水体中功能微生物(以细菌为主)受到影响,一部分细菌适应能力强,生命代谢活动不受到干扰,或者虽受到干扰但经过一定时间后可以恢复到正常状态,这部分细菌以更强的适应能力生存下去,大部分细菌受到外界
磁场作用下,由于体内外水的
物理化学性质的变化(如
电导率、
表面张力等)以及酶的
钝化、失活,不能适应而发生死亡现象,功能细菌数目的急剧减少,造成了BOD指标的降低,因此认为磁处理后BOD降低是水中细菌总数减少的反映。综上所述,可以得出这样一种认识,外界磁场作用于微生物,对微生物的影响存在有害的一面,也存在有利的一面。磁处理具有杀菌效果,当磁场强度加大到2100GS(4A)以上,可以使70%以上的细菌死亡。施加
磁场可以看作微生物生存环境的突发改变,能够经得起周围环境及体内离子、
电子传递速度变化的细菌继续生存下来并且维持正常的生命代谢活动,这部分细菌具有更强的适应能力,或者说具有更强的生物活性。(b)活性污泥磁化会明显提高其活性,从而增强污水的处理效率。我们取7组活性污泥,在37℃恒温下观测不同磁强处理后的甲基兰脱色时间,表明0.367T下脱色时间由无磁化的29h减少至24h,污泥活性增强17%,原因就在于磁化后生存下来的微生物有更大的增殖和代谢能力。为证明这一论断,又取3组造纸中段废水稀释水样,分别在不磁化和磁化处理后标准温度下培养,测得它们的BOD5,后者均比前者高,平均高13%,可见磁处理既有灭菌作用,也有激活某些功能微生物的作用,并加速
有机化合物的降解。(c)磁化使
藻类光合作用大大增强,显着地提高了水中的溶解氧。常温下取2组同样的污水实验,3天后磁化水中绿藻生长旺盛,非磁化水几乎看不到藻类。另外,又取3组生活污水用明暗瓶对比实验磁处理对藻类产氧能力的影响,都表明磁感应强度0.367T时污水的藻类产氧能力最高,比非磁化的平均高出1.1倍,按藻类固碳生产力与产氧能力的关系推算,藻类的生产力也将提高1.1倍,这与农业上磁化水使作物显着增产和大大提高种子的发芽率的结论一致。其原因主要是:①磁化污水使
有机化合物分解加快,为
藻类生长提供了充足的C,N,p等营养物;②磁化使
生物膜渗透性增加,给藻类吸收营养元素创造了有利条件;③磁化使水的透光性增强,为藻类
光合作用提供了更好的光能。水中溶解氧的增加,又促进了水中微生物的生长和有机物分解,二者相互促进,导致有机
废水加速分解。(d)污水磁化可促进高等
水生生物生长,有利于污染物的去除。我们以
泥鳅做实验,在3个水桶(10L)中,1个未磁化,2个被磁化,磁强分别为0.03T和0.25T,分别放养1.5kg的泥鳅,其他条件相同,3个月后所有磁化的水中泥鳅产量均高于未磁化的,平均产量提高15%~20%。另外,还对泥鳅的耐污能力和同化COD进行实验,表明未磁化水桶中放养的50条泥鳅到第5天时全部死去,磁化的水桶中的50条在第7天时还有23条存活下来。由于高等水生动物通过
食物链使
有机化合物分解转化,间接上提高了污水的净化能力3组水样测定7天后的COD,表明被磁化且养有
泥鳅的2、3号水桶的COD去除率比无磁化、无泥鳅的提高20%),并使之以更高的速度转化为对人类有用的产物,变废为宝,防止了二次污染。
磁化实例
人工生态处理系统工程
1980年在原污水站基础上,建成了一个磁化—人工生态处理系统工程,主要由二级磁化和3个生态池组成。该处理系统有效占地面积770m2,平均日处理医院生活污水和病房污水700t。污水直接排入预沉调节生态池,水力滞留时间约4.0h,经
水泵提升和一级磁化,进入放养大量鱼类的生态转化池,水力滞留2.0~2.5d,再次磁化并自流到设有许多垂直生态滤管的金鱼池,滞留时间2.5~3.0d,通过生态滤管集中后排出,出水达三级地面水标准,供医院绿化和清洗之用。该站运用多年来,仅1994年在预沉池排过一次池污,且数量不多,足见污染物降解转化率之高。该系统中:①预沉调节生态池面积180m2,平均水深1.1~2.5m,为兼氧池,池面风眼莲复盖,吸收污水分解的N,p等营养盐;②生态转化池,直径25m,由中心园池、环形复氧沟、环形外池组成,接纳来自预沉池并进行一级磁化的污水,池中放养数万尾
罗非鱼,吞食大量生长的菌、藻及
原生动物界,使水体快速净化,并流入中心园池;③生态滤池100m2,平均水深2.3m,其中放养约6万条金鱼和布设许多生态滤管,接纳中心园池流来并经二级磁化的水流,继续生态转化后经生态滤管过滤后排放,完成整个净化过程。该系统对BOD(BiologicalOxygendemand),COD,N,p去除率全年平均分别为89.9%,87.6%,69.6%和73.6%。该系统工程基建总投资27万元,折合日处理污水1t/d的基建投资单价为386元;年运行费用7500元,折合处理污水1t/d的年运行单价10.7元,远低于表1所列的常规二级处理的投资单价和运行单价。不仅如此,由于
污水处理过程中的
牛蛙、金鱼、
罗非鱼、中药材、
葡萄等收入,每年还可收益1.8万元,比年运行费还多出1.0万元,形成污水处理过程的负投入。该法由于生态处理中的磁化效应,大大加速和提高了污染物转化速度和效率,且变废为宝,使之成为投资少、占地小、效率高、运行费用低、无二次污染,并有一定产出收益的污水处理新途径。
主要结论
磁处理广泛应用于农业、医学、养殖、工业等诸多领域,尤其生命科学。基于这些经验,我们提出将磁处理技术与人工生态系统相结合应用于有机
废水的净化处理,并着重对磁处理问题开展了一系列的实验分析和实际应用,从中获得一些有益的认识。(a)有机废水磁处理,在水体有氧条件下,污水瞬间通过合适的
磁场(0.315~0.368T)后,视水质成分的差异,可直接去除COD8%~25%,且不受水温影响,但连续反复磁化,每次的去除率会随磁化次数急剧下降。实际应用初步表明,磁处理器相隔的水力滞留时间以2~3d为宜。磁处理直接去除COD的原因,是污水被磁化中产生的h2O2等强氧化剂所致,并非生物酶作用或有机物分子结合键直接断裂的结果。(b)厌氧条件下,污水磁化对COD降解也很显着,实验表明,水温40℃在上述适宜
磁场下,可使COD的去除率比不磁化的提高21%~28%,但其机理尚需进一步研究。(c)污水磁化,直接灭菌率可达70%~80%(可能是形体很小的病毒、细菌等),但不能使所有的微生物死亡,尤其功能微生物,生存下来的还会被激活,以更大的活力提高污水净化能力(初步实验约17%)。(d)磁处理的污水,有利于菌藻系统生长和光合作用,可使水体产氧率和藻类(绿藻)生产力增加一倍之多,从而促进生物链对污水的净化作用。(e)磁处理宜与人工生态系统联合使用,上述污水处理站就是这一结合的成功范例,处理效率高,运行费用低,污水资源化和变废为宝,为可持续发展和推广展示了广阔的应用前景。
在含酚废水处理中的应用
由于各工厂含酚废水的具体生成过程千差万别,其组成和性质各不相同,并非任一处理方法都适用,需相应地根据实际情况寻求和采取有效的治理方法和技术。由于磁化效应能够改善混凝效果和促进化学反应⑻,所以采取先将含酚废水经过微弱
磁场的磁化后,再运用絮凝氧化法进行处理会提高其处理的效果。含酚废水在经过微弱磁场的磁化作用后,再运用絮凝氧化法处理,处理效果与未经磁化的废水相比略有差别,而且随着磁化条件的改变存在不同的变化规律。
主要结论
废水经磁化后,与未经磁化相比
絮凝效果和氧化处理大都有不同程度的提高。相对而言,较小的磁化流量对提高絮凝沉淀处理效果有利,而较大的磁化流速有利于获得较高的氧化去酚率。增加废水的磁化次数能够使絮凝去酚率略有提高,对氧化去酚率的增加不很明显。一般地可使废水经过3~4个
磁化器即可。无论磁化与否,氧化去酚率均随着氧化剂
二氧化氯使用量的增加而提高。但废水比较高的流速经磁化后,在相同的氧化量条件下,其氧化去酚率均比未磁化的要高。这有利于减少氧化剂消耗量和处理费用,而不影响总处理效果。磁化效应能够改变水的
微观状态和结构从而影响其物理、
化学性质。在适当的条件下可以明显改善污水的处理效果。因此将磁化技术和工业
废水处理过程相结合的新处理手段值得进行研究和推广应用。
在的吸附溶液中的铬的应用
关于
四氧化三铁吸附
阴离子的机理已有研究,Fe3O4在水中由于
水解呈正电性,对阴离子的的吸附平衡可以用形式与Langmuir等温式相类似的的函数关系式描述,但吸附很难得到最大值。将Fe3O4粉末和磁性介质置于磁场中,磁化Fe3O4粉末聚集在具有磁力线密度不等的
磁通量的磁性介质附近,导致磁化的Fe3O4对Cr6+产生了磁力,通过提高磁场强度,增大Fe3O4的磁力,从而增加对Cr6+吸附量。但另一方面,在磁化Fe3O4的表面
吸附量的增加,因为被吸附的粒子电性相同,斥力增大,抵消了一部分磁力,造成了在较小的
磁场强度下,吸附质增大到一定程度后,吸附量反而下降。由此可见,在磁场作用下,磁化的
四氧化三铁表面的吸附量是磁力和电性斥力作用的结果,并形成多分子吸附。
主要结论
通过以上的分析表明,磁化水技术不仅在
水循环系统的除垢去垢领域有着重要的作用,而且磁场水处理技术还在
废水处理方面有很好的效用,废水经过磁化后再进行生物和物理方法进行处理得到的效果,明显好于没有经过磁化的废水。这主要是因为磁化后的水性质发生了变化,从而导致了微生物生长条件,
絮凝条件的变化。但并不是
磁场强度越大效果越好,他们都有一个相对的高效范围,其机理尚需进一步研究。相信随着对其不断的研究,磁化水在废水处理领域中必将具有更广阔的应用前景。作用根据中华人民共和国国家卫生和计划生育委员会(卫生部)2005年第10号公告,涉水产品不得宣称有保健作用。目前暂无权威科学证明磁化水对生物有益。
骗局争议
2019年,《
科技日报》发文《“生命能量水”卖出天价?警惕披上科技马甲的新式骗局》,揭露磁化水的伪宣传,并提出其能够欺骗6万多人的原因。其一,是此类宣传内容蹭了新技术的热点;其二,是“
信息茧房”效应带来的分辨力下降;《科技日报》表示,想要破除茧房效应,一方面应该加强监管,阻断违法、违背常识的信息肆意传播的渠道;另一方面也需要科普手段尽快与新传播技术携手,帮助消费者与全社会将违反常识的假冒伪劣产品赶出去。