双向
可控硅,是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。
可控硅分单向可控硅与双向可控硅。单向可控硅一般用于彩电的过流、过压保护电路。双向可控硅一般用于交流调节电路,如调光台灯及
全自动洗衣机中的
交流电源控制。双向可控硅一直为家电行业中主要的功率控制器件。近几年,随着半导体技术的发展,大功率双向
可控硅不断涌现,并广泛应用在变流、变频领域,可控硅应用技术日益成熟。
产品命名
双向可控硅为什么称为“TRIAC”?
交流
半导体开关:ACsemiconductorswitch
(取前两个字母)
以上两组名词组合成“TRIAC”
中文译意“三端双向可控硅开关”。
由此可见“TRIAC”是双向可控硅的统称。
双向:
挪威管理学院directional(取第一个字母)
控制:Controlled(取第一个字母)
再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。
双向:Bi-directional(取第一个字母)
由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰
飞利浦Philips公司,均以此来命名双向可控硅。
代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。这些都是四象限/非绝缘型/双向可控硅;
Philips公司的产品型号前缀为“BTA”字头的,通常是指三
象限角的双向可控硅。
而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如:
四象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等;
四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等;
ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三
象限角双向可控硅”。如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW等等。
至于型号后缀字母的触发电流,各个厂家的代表含义如下:
飞利浦公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,
型号没有后缀字母之触发电流,通常为25-35mA;
PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。
意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA,注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明
一般分为最小值/典型值/最大值,而非“=”一个参数值。
元件简介
从外表上看,双向
可控硅和普通可控硅很相似,也有三个
电极。但是,它除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做
阳极和
阴极,而统称为主电极Tl和T2。它的符号也和普通可控硅不同,是把两个可控硅反接在一起画成的,如图2所示。它的型号,在我国一般用“
中国强制性产品认证TS”或“KS”表示;国外的资料也有用“TRIAC”来表示的。
特点及应用
双向可控硅可被认为是一对反并联连接的普通可控硅的集成,工作原理与普通单向可控硅相同。双向可控硅有两个主电极T1和T2,一个门极G,门极使器件在主电极的正反两个方向均可触发导通,所以双向可控硅在第1和第3
象限角有对称的伏安特性。双向可控硅门极加正、负触发脉冲都能使管子触发导通,因此有四种触发方式。双向可控硅应用为正常使用双向可控硅,需定量掌握其主要参数,对双向可控硅进行适当选用并采取相应措施以达到各参数的要求。
·耐压级别的选择:通常把VDRM(断态重复峰值电压)和VRRM(反向重复峰值电压)中较小的值标作该器件的额定电压。选用时,额定电压应为正常工作峰值电压的2~3倍,作为允许的操作
过电压裕量。
·电流的确定:由于双向可控硅通常用在交流电路中,因此不用平均值而用有效值来表示它的额定电流值。由于
可控硅的过载能力比一般电磁器件小,因而一般家电中选用可控硅的电流值为实际工作电流值的2~3倍。同时,可控硅承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时的峰值电流应小于器件规定的IDRM和IRRM。
·通态(峰值)电压VTM的选择:它是可控硅通以规定
倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅。
·维持电流:IH是维持可控硅保持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。
·电压上升率的抵制:dv/dt指的是在关断状态下电压的上升
斜率,这是防止误触发的一个关键参数。此值超限将可能导致
可控硅出现误导通的现象。由于可控硅的制造工艺决定了A2与G之间会存在
寄生电容。
安装
对负载小,或电流持续时间短(小于1秒钟)的双向可控硅,可在
自由空间工作。但大部分情况下,需要安装在散热器或散热的支架上,为了减小
热阻,可控硅与散热器间要涂上
导热硅脂。
双向可控硅固定到散热器的主要方法有三种,
一字夹压接、
螺栓固定和铆接。前二种方法的安装工具很容易取得。很多场合下,铆接不是一种推荐的方法。
夹子压接:是推荐的方法,热阻最小。夹子对器件的塑封施加压力。这同样适用于非绝缘封装(sot82和sot78)和绝缘封装(sot186f-pack和更新的sot186ax-pack)。注意,sot78就是to220ab。
螺栓固定:sot78组件带有m3成套安装零件,包括矩形垫圈,垫圈放在螺栓头和
接插件片之间。应该不对器件的塑料体施加任何力量。
安装过程中,螺丝刀决不能对器件塑料体施加任何力量;和接头片接触的散热器表面应处理,保证平坦,10mm上允许偏差0.02mm;安装
力矩(带垫圈)应在0.55nm和0.8nm之间;应避免使用自攻丝螺钉,因为挤压可能导致安装孔周围的隆起,影响器件和散热器之间的热接触。安装力矩无法控制,也是这种安装方法的缺点;器件应首先机械固定,然后焊接引线。这可减少引线的不适当
应力。
元件外形和封装形式
双向可控硅的规格、型号、外形以及
电极引脚排列依生产厂家不同而有所不同,但其电极引脚多数是按T1、T2、G的顾序从左至右排列(观察时,电极引脚向下,面对标有
字符的一面)。目前市场上最常见的几种塑封外形结构双向可控硅的外形及电极引脚排列如下图1所示。
双向可控硅的电路符号如图2所示。双向
可控硅的外形结构和普通可控硅没有多大区别,几十安以下的,则通常采用图1所示塑封外形结构。几十安到一百余安电流大小的则采用
螺栓型;
额定电流在200安以上的一般都是平板型的。
常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220AB、TO-3P、SOT-89、TO-251、TO-252等。
构造原理
尽管从形式上可将双向可控硅看成两只普通可控硅的组合,但实际上它是由7只
晶体管和多只
电阻构成的功率集成器件。小功率双向可控硅一般采用塑料封装,有的还带
散热板。典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),
麦金塔218-10(8A/800V)等。大功率双向可控硅大多采用RD91型封装。
双向可控硅属于NPNPN五层器件,三个
电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成
阳极或
阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向可控硅由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。
从内部结构来看,双向可控硅是一种N—P—N—P—N型五层结构的
半导体器件,见图3(a)。为了便于说明问题,我们不妨把图3(a)看成是由左右两部分组合而成的,如图3(b)。这样一来,原来的双向
可控硅就被分解成两个P—N—P—N型结构的单向可控硅了。如果把左边从下往上看的p1—N1—P2—N2部分叫做正向的话,那么右边从下往上看的N3—P1—N1—P2部分就成为反向,它们之间正好是一正一反地并联在一起。我们把这种联接叫做反向并联。因此,从电路功能上可以把它等效成图3(c),也就是说,一个双向可控硅在电路中的作用是和两只普通可控硅反向并联起来等效的。这也正是双向可控硅为什么会有双向控制导通特性的根本原因。
实际上双向
可控硅并不能简单地用两种单向可控硅反向并联获得,它内部结构相当于7只
三极管连结而成,如图所示。
工作特性
双向可控硅不象普通可控硅那样,必须在
阳极和
阴极之间加上正向电压,管子才能导通。对双向可控硅来说,无所谓阳极和阴极。它的任何一个主
电极,对图3(b)中的两个可控硅管子来讲,对一个管子是阳极,对另一个管子就是阴极,反过来也一样。因此,双向可控硅无论主电极加上的是正向或是反向电压,它都能被触发导通。不仅如此,双向可控硅还有一个重要的特点,这就是:不管触发信号的
极性如何,也就是不管所加的触发信号电压UG对T1是正向还是反向,双向可控硅都能被触发导通。双向
可控硅的这个特点是普通可控硅所没有的。
双向可控硅的特性曲线
既然一个双向可控硅是由两只普通可控硅反向并联而成的,那么,我们会很自然地想到,它的特性曲线就应该是由这两只普通可控硅的特性曲线组合而成。图4示出了双向可控硅的特性曲线。
由图可见,双向可控硅的特性曲线是由一、三两个
象限角内的曲线组合成的。第一象限的曲线说明当加到主
电极上的电压使Tc对T1的
极性为正时,我们称为正向电压,并用符号U21表示。当这个电压逐渐增加到等于转折电压UBO时,图3(b)左边的
可控硅就触发导通,这时的通态电流为I21,方向是从T2流向Tl。从图中可以看到,触发电流越大,转折电压就越低,这种情形和普通可控硅的触发导通规律是一致的,当加到主电极上的电压使Tl对T2的极性为正时,叫做反向电压,并用符号U12表示。当这个电压达到转折电压值时,图3(b)右边的可控硅便触发导通,这时的电流为I12,其方向是从T1到T2。这时双向可控硅的特性曲线,如图4中第三
象限角所示。
在上述两种情况中,除了加到主
电极上的电压和通态电流的方向相反外,它们的触发导通规律却是同的。如果这两个并联连接的管子特性完全相同的话,一,三象限的特性曲线就应该是对称的。
触发电路
四种触发方式
由于在双向可控硅的主电极上,无论加以正向电压或是反向电压,也不管触发信号是正向还是反向,它都能被触发导通,因此它有以下四种触发方式:
(1)当主电极T2对Tl所加的电压为正向电压,控制积极G对第一电极Tl所加的也是正向触发信号(图5a)。双向可控硅触发导通后,电流I2l的方向从T2流向T1。由特性曲线可知,这时双向可控硅触发导通规律是按第二象限的特性进行的,又因为触发信号是正向的,所以把这种触发叫做“第一象限的正向触发”或称为I+触发方式。
(2)如果主
电极T2仍加正向电压,而把触发信号改为反向信号(图5b),这时双向可控硅触发导通后,通态电流的方向仍然是从T2到T1。我们把这种触发叫做“第一象限的负触发”或称为I-触发方式。
(3)两个主电极加上反向电压U12(图5c),输入正向触发信号,双向可控硅导通后,通态电流从T1流向T2。双向可控硅按第三
象限角特性曲线工作,因此把这种触发叫做Ⅲ+触发方式。
(4)两个主电极仍然加反向电压U12,输入的是反向触发信号(图5d),双向可控硅导通后,通态电流仍从T1流向T2。这种触发就叫做Ⅲ-触发方式。
双向可控硅虽然有以上四种触发方式,但由于负信号触发所需要的触发电压和电流都比较小。工作比较可靠,因此在实际使用时,负触发方式应用较多。
双向
二极管是一种小功率五层二端元件,它的正反向伏安特性曲线和双向可控硅一样,但它没有控制极,当两个极之间所加的电压达到转折电压时,双向二极管便导通。图8(a)就是利用双向二极管2CTS组成的触发电路。当电源电压处于正半周时,电源电压通过Rl向C1充电,
电容C1上的电压
极性是上正下负。当这个电压增高达到双向二圾管的转折电压时,双向二极管突然转折导通,使双向
可控硅的控制极G和主
电极T1之间得到一个正向触发脉冲,可控硅导通。这时就相当于I+触发方式。在电源电压过零的瞬间,双向可控硅自动阻断;当电源电压处于负半周时,电源电压对电容C1反向充电,C1上电压的极性为下正上负,当这个电压值充到等于双向
整流管的转折电压时,双向
二极管突然反向导通,使双向可控硅得到一个反向触发信号,于是双向可控硅导通。这时就相当于Ⅲ-触发方式。在这个电路中,调节R1韵阻值,可以改变R1C1的
时间常数,因而改变了触发脉冲出现的时刻,也就是改变了双向可控硅的导通角,达到了调节灯光的目的。电路中各处电压的
波形见图8(b),其中UL是电灯两端的电压。
典型应用
双向晶闸管可广泛用于工业、交通、
家用电器等领域,图5是由双向晶闸管构成的
接近传感器电路。R为门极限流
电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小
磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过干簧管的电流很小,时间仅几微秒,所以开关的寿命很长。
现在
可控硅应用市场相当广阔,可控硅应用在自动控制领域,机电领域,工业电器及家电等方面都有可控硅的身影。许先生告诉记者,他目前的几个大单中还有用于卷发产品的单,可见可控硅在人们的生活中都有广泛的应用。更重要的是,可控硅应用相当稳定,比方说用于家电产品中的
电子开关,可以说是鲜少变化的。无论其他的元件怎么变化,可控硅的变化是不大的,这相对来说,等于扩大的可控硅的应用市场,减少了投资的风险。随着消费类电子产品的热销,更为
可控硅提供了销售空间。推出两款可优化消费电子产品性能的新型标准三端双向可控硅开关元件,这两种三端双向可控硅开关采用先进的平面硅结构设计,具有很高的可靠性,加上在导通状态下的损耗最多仅为1.5V,因而可达致高效率。这两种产品的目标应用领域包括:洗衣机、
吸尘器、
调光器、遥控开关和
交流电机控制设备。
过零触发型
交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电
耦合器、过零触发电路、开关电路(包括
双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。
固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。
双向可控硅可广泛用于工业、交通、
家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)和固态
接触器电路中。
产品判别
在实际应用或是诊断电路故障时,常需要判别双向可控硅各
电极的
极性及其性能的好坏。下面介绍业余条件下的简易判别方法。
极性的判别:将万用电表量程开关置于“Rx1”(或Rx10”)挡,用黑表笔固定接一电极,用红表笔分别去测另两个电极,当测得的两个阻值都是无穷大时,那么黑表笔所接电极就是T2。若测得的阻值不全为无穷大,则应将黑表笔换接另一个电极再测。判别了电极T2后,用两只表笔测T1和G两极,再调换表笔测一次,比较两次测得的结果,测得阻值较小时,黑表笔所接电极就是T1,红表笔所接电极就是控制极G。
好坏的判别:在已知各
电极极性的条件下,将万用电表置“Rx1”挡,黑表笔接G,红表笔接Tl,测得阻值为几十欧姆(因功率不同,其阻值略有偏差),红表笔改接T2,阻值应无穷大;然后再将黑表笔接T1,红表笔接G,测得结果应为几十欧,再将黑表笔改接T2,阻值也应无穷大。用两只表笔测T1、T2两极之间的
电阻,再调换表笔测一次,两次测得的阻值均应无穷大。测量结果若满足上述要求,一般可以判定该器件是好的。如果G与T1之间的电阻等于零,或G与T2、T1与T2之间的电阻都很小,就表明器件内部巳击穿或
短路,如果G与T1之间的电阻为无穷大,则表明器件内部断路。
使用双向可控硅要注意的问题
在使用双向
可控硅时,除了普通可控硅所应注意的问题以外,还需要注意以下几点。
1、双向可控硅通常有耐压、额定导通电流、触发电流、漏电流和电压降等参数,其中前两项在应用中最为重要。例如用其控制灯泡,由于灯泡未亮时
灯丝电阻很小,点亮瞬间,冲击电流是正常工作时电流的10—20倍,一旦选用管子参数时未留有足够的余量,就有可能使管子受大电流冲击而损坏。
2、普通可控硅在参数表或合格证中给出的
额定电流是平均值,而双向可控硅给出的额定电流是有效值。因此在利用双向
可控硅代替两个并联反接的普通可控硅时,必须经过换算后再去挑选合格的元件。换算的公式是IT=0.45IKs。式中:IT—普通可控硅额定电流(安);IKS—双向可控硅额定电流(安)。例如,一个额定电流为500安的双向可控硅在作为双向开关使用时,相当于两个多少额定电流值的普通可控硅?由换算公式.可得,
IT=0.45x500(安)=225(安)
从普通可控硅参数系列中可以查到,近似的数值为200安。所以
额定电流为500安的双向可控硅在作交流双向开关使用时,可以代替两只额定电流为200安的普通可控硅。
3、实际使用中,在选择双向可控硅的触发电路时,一方面应尽量选用较容易触发的反向触发信号,另一方面应使触发信号的电压和电流尽可能的高些和大一些。通常应该使触发电流比手册中查出的Ic值大一倍左右。
4、选择双向可控硅时,应选额定电流值大于负载电流有效值的双向可控硅。对于
电容性负载还应注意
过电流保护。
5、对于电感性负载,应注意电压的上升率要小于手册中给出的du值,否则将会出现失控现象。为解决这个问题,可以在主
电极上并联RC
缓冲电路,
电阻R的值可选在100欧左右,电容C的容量可选用0.1左右的为好。
6、注意散热问题。双向
可控硅与普通
晶体管一样,受温度影响很大,温度过高将容易产生误动作,甚至烧毁器件。安装时应加装足够大的散热器;在实际应用中要注意的问题。
7、当维修电器需要购买新的双向可控硅来代换已经损坏的时,事先应根据所带负载的功率核实原管子的耐压和额定导通电流,同时判准新器件电极
极性是否与原来的一致。
注意事项
交流调压多采用双向可控硅,它具有体积小、重量轻、效率高和使用方便等优点,对提高生产效率和
降低成本等都有显著效果,但它也具有过载和抗干扰能力差,且在控制大
电感负载时会干扰电网和自干扰等缺点,下面谈谈可控硅在其使用中如何避免上述问题。
1:灵敏度
双向可控硅是一个三端元件,但我们不再称其两极为阴阳极,而是称
双向可控硅
作T1和T2极,G为控制极,其控制极上所加电压无论为正向触发脉冲或负向触发脉冲均可使控制极导通,四种条件下双向
可控硅均可被触发导通,但是触发灵敏度互不相同,即保证双向可控硅能进入导通状态的最小门极电流IGT是有区别的,其中(a)触发灵敏度最高,(b)触发灵敏度最低,为了保证触发同时又要尽量限制门极电流,应选择(c)或(d)的触发方式。
2:可控硅过载的保护
可控硅元件优点很多,但是它过载能力差,短时间的过流,过压都会造成元件损坏,因此为保证元件正常工作,需有条件(1)外加电压下允许超过正向转折电压,否则控制极将不起作用;(2)
可控硅的通态平均电流从安全角度考虑一般按最大电流的1.5~2倍来取;(3)为保证控制极可靠触发,加到控制极的触发电流一般取大于其额值,除此以外,还必须采取保护措施,一般对过流的保护措施是在电路中串入快速
熔断器,其
额定电流取可控硅电流平均值的1.5倍左右,其接入的位置可在交流侧或直流侧,当在交流侧时额定电流取大些,一般多采用前者,
过电压保护常发生在存在
电感的电路上,或交流侧出现干扰的浪涌电压或交流侧的暂态过程产生的过压。由于,过电压的尖峰高,作用时间短,常采用
电阻和
电容缓冲电路加以抑制。
3:控制大电感负载时的干扰电网和自干扰的避免
可控硅元件控制大电感负载时会有干扰电网和自干扰的现象,其原因是当
可控硅元件控制一个连接电感性负载的电路断开或闭合时,其
电感线圈中的电流通路被切断,其变化率极大,因此在电感上产生一个高电压,这个电压通过电源的内阻加在开关触点的两端,然后感应电压一次次放电直到感应电压低于放电所必须的电压为止,在这一过程中将产生极大的脉冲束。这些脉冲束叠加在供电电压上,并且把干扰传给供电线或以辐射形式传向周围空间,这种脉冲具有很高的幅度,很宽的频率,因而具有感性负载的开关点是一个很强的噪声源。
3.1:为防止或减小噪声,对于移相控制式交流调压一般的处理方法有
电感电容滤波电路,阻容
阻尼电路和双向
二极管阻尼电路及其它电路。
3.2:电感电容滤波电路,由电感电容构成谐振回路,其低通
截止频率为f=1/2π
Ic,一般取数十千赫低频率。
3.3:双向二极管阻尼电路。由于
整流管是反向串联的,所以它对输入信号
极性不敏感。当负载被电源激励时,抑制电路对负载无影响。当电感负载
电感线圈中电流被切断时,则在抑制电路中有瞬态电流流过,因此就避免了感应电压通过开关接点放电,也就减小了噪声,但是要求二极管的反向电压应比可能出现的任何瞬态电压高。另一个是额定电流值要符合电路要求。
3.4:
电阻电容阻尼电路,利用电容电压不能突变的特性吸收可控硅换向时产生的尖峰状
过电压,把它限制在允许范围内。串接电阻是在可控硅阻断时防止电容和
电感振荡,起阻尼作用,另外阻容电路还具有加速可控硅导通的作用。
3.5:另外一种防止或减小噪声的方法是利用通断比控制交流调压方式,其原理是采用过零触发电路,在电源电压过零时就控制双向可控硅导通和截止,即控制角为零,这样在负载上得到一个完整的
正弦信号,但其缺点是适用于
时间常数比通断周期大的系统,如恒温器。
保护措施
晶闸管元件的主要弱点是承受
过电流和
过电压的能力很差,即使短时间的过流和过电压,也可能导致晶闸管的损坏,所以必须对它采用适当的保护措施。
1.过电流保护
晶闸管出现过电流的主要原因是过载、
短路和误触发。过电流保护有以下几种:
快速容断器快速容断器中的溶丝是银质的,只要选用适当,在同样的过电流
倍数下,它可以在晶闸管损坏前先溶断,从而保护了晶闸管。
过电流继电器当电流超过过电流继电器的整定值时,过电流继电器就会动作,切断保护电路。但由于继电器动作到切断电路需要一定时间,所以只能用作
可控硅的
过载保护。
过载截止保护利用
过电流的信号将晶闸管的触发信号后移,或使晶闸管得导通角减小,或干脆停止触发保护晶闸管。
过电压可能导致晶闸管的击穿,其主要原因是由于电路中
电感元件的通断、
熔断器熔断或晶闸管在导通与截止间的转换。对过压保护可采用两种措施
阻容保护阻容保护是
电阻和
电容串联后,接在晶闸管电路中的一种过电压保护方式,其实质是利用
电容器两端电压不能突变和电容器的
电场储能以及电阻使耗能元件的特性,把过电压的能量变成电场能量储存在电场中,并利用电阻把这部分能量消耗掉。
参数符号
产品展示