CT
电子计算机断层扫描
CT(Computed Tomography),即电子计算机断层扫描,它是利用精确准确的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕人体的某一部位作一个接一个的断面扫描,具有扫描时间快,图像清晰等特点,可用于多种疾病的检查;根据所采用的射线不同可分为:X射线CT(X-CT)以及γ射线CT(γ-CT)等。
原理
CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。
扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X射线吸收系数可以通过不同的数学方法算出。
CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。
发展历史
自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。
1963年,美国物理学家阿兰·科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。
1967年,英国电子工程师亨斯菲尔德(Hounsfield)在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。
1971年9月,亨斯菲尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。
1972年第一台CT诞生,仅用于颅脑检查,4月,亨斯菲尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。
1974年制成全身CT,检查范围扩大到胸、腹、脊柱及四肢。
第一代CT机采取旋转/平移方式(rotate/translate mode)进行扫描和收集信息。由于采用笔形X线束和只有1~2个探测器,所采数据少,所需时间长,图像质量差。
第二代CT机扫描方式跟上一代没有变化,只是将X线束改为扇形,探测器增至30个,扩大了扫描范围,增加了采集数据,图像质量有所提高,但仍不能避免因患者生理运动所引起的伪影(Artifact)。
第三代CT机的控测器激增至300~800个,并与相对的X线管只作旋转运动(rotate/rotate mode),收集更多的数据,扫描时间在5s以内,伪影大为减少,图像质量明显提高。
第四代CT机控测器增加到1000~2400个,并环状排列而固定不动,只有X线管围绕患者旋转,即旋转/固定式 (rotate/stationary mode),扫描速度快,图像质量高。
第五代CT机将扫描时间缩短到50ms,解决了心脏扫描,是一个电子枪产生的电子束(electron beam)射向一个环形钨靶,环形排列的探测器收集信息。推出的64层CT,仅用0.33s即可获得病人的身体64层的图像,空间分辨率小于0.4mm,提高了图像质量,尤其是对搏动的心脏进行的成像。
设备组成
CT设备主要有以下三部分:
从提出到应用,CT设备也在不断地发展。探测器从原始的1个发展到多达4800个,扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。
超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40 ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。
相关术语
CT值
某物质的CT值等于该物质的衰减系数与水的吸收系数之差再与水的衰减系数相比之后乘以分度因素。物质的CT值反映物质的密度,即物质的CT值越高相当于物质密度越高。
即CT值=α×(μm-μw)/μw
α为分度因数,其取值为1000时,CT值的单位为亨氏单位(Hu)。人体内不同的组织具有不同的衰减系数,因而其CT值也各不相同。按照CT值的高低分别为骨组织,软组织,水,脂肪以及气体。水的CT值为0Hu左右。
空间和密度分辨率
CT设备的分辨率主要分为空间分辨率、密度分辨率、时间分辨率三种,前者指影像中能够分辨的最小细节,中者指能显示的最小密度差别,后者指机体活动的最短时间间距。
层厚与层距
前者指扫描层的厚度,后者指两层中心之间的距离。
部分容积效应
由于每层具有一定的厚度,在此厚度内可能包括密度不同的组织,因此,每一像素的CT值,实际所代表的是单位体积内各种组织的CT值的平均数
窗宽与窗位
由于正常或异常的组织具有不同的CT值,范围波动在-1000~+1000Hu范围内,而人类眼睛的分辨能力相对有限,因此欲显示某一组织结构的细节时,应选择适合观察该组织或病变的窗宽以及窗位,以获得最佳的显示。
薄层扫描
是指层厚为5mm或更薄层厚以下的扫描,用于观察病变的细节。
视场
视场(FOV)分为扫描野(SFOV)和显示野(DFOV)两种,扫描野是X线扫描时的范围,显示野是数据重建形成的图像范围,扫描野大于显示野。
管电流、管电流量
即管电流、管电流量,KV、mAs决定X线的硬度和光子数量的两种参数,增大KV值可以使X线的穿透力增加,增大mAs则增加辐射量,所以面对不同年龄,不同体型的病人时,需要选择对应的检查选项。
矩阵
CT矩阵用于重建图像,有256x256,512x512等几种,常用的是512x512矩阵。
噪声
一个均匀物体被扫描,在一个确定的ROI(感兴趣区)范围内,每个像素的CT值并不相同而是围绕一个平均值波动,CT值的变化就是噪音。轴向(断层)图像的CT值呈现一定的涨落。即是说CT值仅仅作为一个平均值来看,它可能有上下的偏差,此偏差即为噪音。噪音是由辐射强度来决定的。也即是由达到探测器的X-Ray量子数来决定的。强度越大,噪音越低。图像噪音依赖探测器表面之光子通量的大小。它取决于X线管的管电压,管电流,予过滤及准直器孔径等。重建算法也影响噪音。
即信噪比SNR,信号与招噪声的比值,适当减少噪声能使图像变得更佳。
扫描方式
CT的扫描方式分为分平扫(plain CT scan)、造影增强扫描(contrast enhancement,CE)和造影扫描三种。
平扫
平扫是指不用造影增强或造影的普通扫描,一般CT检查都是先作平扫。
增强扫描
增强扫描是指用高压注射器经静脉注入水溶性有机碘剂,如60%~76%泛影葡胺60ml后再行扫描的方法。血内碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分主要有团注法和静滴法。
造影扫描
造影扫描是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10 ml或注入空气4~6 ml进行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。
发明
发明背景
自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X射线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X射技术检查人体病变的不足。
1963年,美国物理学家阿兰·科马克发现人体不同的组织对X射线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。
1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。1971年10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X射线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自威廉·伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和阿兰·科马克共同获取1979年诺贝尔生理学或医学奖。而后,CT已广泛运用于医疗诊断上。
设备构成
CT仪设备主要有以下三部分:
①扫描部分由X线管、探测器和扫描架组成;
②计算机系统,将扫描收集到的信息数据进行贮存运算;
③图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。
图像特点
CT图像是由一定数目由黑到白不同灰度的像素按矩阵排列所构成。这些像素反映的是相应体素的X射线吸收系数。不同CT装置所得图像的像素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,像素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X射线图像高。
CT图像是以不同的灰度来表示,反映器官和组织对X射线的吸收程度。因此,与X射线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X射线图像相比,CT的密度分辨力高,即有高的密度分辨力(密度 resolutiln)。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。
CT图像是层面图像,常用的是横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建冠状面和矢状面的层面图像,可以多角度查看器官和病变的关系。
检查方法
普通检查
常称为平扫或非增强扫描,指未行静脉内注射造影剂或造影的扫描。一般常规先行平扫。腹部及盆腔普通扫描通常在扫描前口服一定量的对比剂充盈胃肠道,以增加胃肠等空腔脏器与周围组织结构的对比度。
造影剂增强扫描
就是在扫描前由静脉内注入水溶性有机碘造影剂后再行扫描的方法。注入方法可为滴注,也可为推注或两者合用。增强扫描主要用于:发现平扫未显示的病变;鉴别水肿与病变组织;进一步明确病变的大小以及与周边组织的关系,为治疗方案的拟定提供信息;为疑难病例提供进一步鉴别诊断的信息。
造影扫描
是先行器官或组织的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10ml或注入空气4~6ml行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。
核磁共振
计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是髂关节。CT优于传统X线检查之处在于其密度分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能CT图像上“原形毕露”。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。
磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的表面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。
X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。
临床应用
诊断价值
由于CT的高分辨力,可使器官和结构清楚显影,能清楚显示出病变。在临床上,神经系统与头颈部CT诊断应用早,对脑瘤、脑外伤、脑血管病、脑的炎症与寄生虫病、脑先天畸形和脑实质性病变等诊断价值大。在五官科诊断中,对于框内肿瘤、鼻窦、咽喉部肿瘤,特别是内耳发育异常有诊断价值。
在呼吸系统诊断中,对肺癌的诊断、纵隔肿瘤的检查和瘤体内部结构以及肺门及纵隔有无淋巴结的转移,做CT检查做出的诊断都是比较可靠的。
在心脏大血管和骨骼肌肉系统的检查中也是有诊断价值的。
检查范围
一、头部:脑出血脑梗死,动脉瘤,血管畸形,各种肿瘤,外伤,出血,骨折,先天畸形等;
二、胸部:肺、胸膜及纵隔各种肿瘤,肺结核肺炎支气管扩张肺脓肿,囊肿,肺不张气胸,骨折等;
三、腹、盆腔:各种实质器官的肿瘤、外伤、出血,肝硬化胆石症尿道结石、积水,膀胱前列腺病变,某些炎症、畸形等;
四、脊柱、四肢:骨折,外伤,骨质增生,椎间盘病变,椎管狭窄,肿瘤,结核等;
五、骨骼、血管三维重建成像;各部位的MPR、MIP成像等;
六、CTA(CT血管成像):大动脉炎,动脉硬化闭塞症,主动脉瘤及夹层等;
七、甲状腺疾病甲状腺腺瘤、甲状腺腺癌等;
其他:眼科及眼眶肿瘤,外伤;鼻旁窦炎鼻息肉、肿瘤、囊肿、外伤等。
医学检查
CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对颅内肿瘤、脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤脑梗死脑出血以及椎管内肿瘤椎间盘脱出症等病诊断效果好,诊断较为可靠。因此,脑的X线造影除脑血管造影仍用以诊断颅内动脉瘤、血管发育异常和脑血管闭塞以及了解脑瘤的供血动脉以外,其他如气脑、脑室造影等均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维实时显示,有希望取代常规的脑血管造影。
CT对头颈部疾病的诊断也很有价值。例如,对眶内占位病变、鼻窦早期癌、中耳小胆脂瘤、听骨破坏与脱位、内耳骨迷路的轻微破坏、耳先天发育异常以及鼻咽癌的早期发现等。但明显病变,X线平片已可确诊者则无需CT检查。
对胸部疾病的诊断,CT检查随着高分辨力CT的应用,日益显示出它的优越性。通常采用造影增强扫描以明确纵隔和肺门有无肿块或淋巴结增大、支气管有无狭窄或阻塞,对原发和转移性纵隔肿瘤淋巴结结核、中心型肺癌等的诊断,有较大的帮助。肺内间质、实质性病变也可以得到较好的显示。CT对平片检查较难显示的部分,例如同心、大血管重叠病变的显圾,更具有优越性。对胸膜、膈、胸壁病变,也可清楚显示。
心及大血管的CT检查,尤其是后者,具有重要意义。心脏方面主要是心包病变的诊断。心腔及心壁的显示。由于扫描时间一般长于心动周期,影响图像的清晰度,诊断价值有限。但冠状动脉和心瓣膜的钙化、大血管壁的钙化及动脉瘤改变等,CT检查可以很好显示。
腹部及盆部疾病的CT检查,应用日益广泛,主要用于肝、胆、胰、脾,腹膜腔及腹膜后间隙以及泌尿和生殖系统的疾病诊断。尤其是占位性病变、炎症性和外伤性病变等。胃肠病变向腔外侵犯以及邻近和远处转移等,CT检查也有很大价值。当然,胃肠管腔内病变情况主要仍依赖于剂造影和内镜检查及病理活检。
工业检测
现代工业的发展,使得CT在无损检测和逆向工程中发挥重大的作用。
采用工业CT对产品进行无损检测的结果表明,工业CT技术对气孔、夹杂、针孔、缩孔、分层等各种常见缺陷具有很高的探测灵敏度,并能精确地测定这些缺陷的尺寸,给出其在零件中的部位。与其他常规无损检测技术相比,工业CT技术的空间和密度分辨率小于0.5%,成像尺寸精度高,不受工件材料种类和几何形状限制,可生成材料缺陷的三维图像,在工程陶瓷结构尺寸、材料均匀性、微孔率精确测量和整体微裂纹、夹杂物、气孔、异常大晶粒等缺陷检测中极具研究和应用价值。
安保检测
除了医学及工业应用,CT设备还可应用于安保、航空运输、港湾运输、大型货物集装箱案件装置等的检测中。
优点
CT诊断由于它的特殊诊断价值,已广泛应用于临床。而且随着工艺水平、计算机技术的发展,CT得到了飞速的发展。多排螺旋CT投入实用的机型已经发展到了320排,同时各个厂家也在研究更先进的平板CT。CT与PET相结合的产物PET/CT在临床上得到普遍运用,特别是在肿瘤的诊断上更是具有很高的应用价值。
1、密度分辨率高,能更好地显示由软组织构成的器官。
2、是横断面图,可连续扫描若干层,可作冠状、矢状重建。
3、由电子计算机重建的图像,不与邻近图层的影像重叠。
4、CT值可提供诊断参考价值。
缺点
CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。此外,CT诊断辐射剂量较普通X线机大,故怀孕妇女不宜进行CT检查。
1、图像空间分辨力不如X线图像高。
2、观看横断面图要有丰富的断面解剖知识。
3、有一定的局限性,如累及粘膜层及肌层的胃肠道疾病等CT检查容易漏诊。
4、病变的密度与正常组织密度相近的病变,平扫易漏诊,须增强扫描。
5、有X射线辐射影响。2013年1月,美国权威杂志《消费者报告》网站披露,一项研究显示,很多人不重视甚至低估CT扫描的危害。而实际上,CT扫描中的辐射每年或可致2.9万人患癌症。
目录
概述
原理
发展历史
设备组成
相关术语
CT值
空间和密度分辨率
层厚与层距
部分容积效应
窗宽与窗位
薄层扫描
扫描方式
发明
发明背景
设备构成
图像特点
检查方法
普通检查
造影剂增强扫描
造影扫描
核磁共振
临床应用
诊断价值
检查范围
医学检查
优点
缺点
参考资料