数学上,一个公理系统(或称公理化系统,公理体系,公理化体系)是一个公理的集合,从中一些或全部公理可以用来一起逻辑的导出
定理。一个数学理论由一个公理系统和所有它导出的定理组成。一个完整描述出来的公理系统是
形式系统的一个特例;但是通常完全角式化的努力带来在确定性上递减的收益,并让人更加无法阅读。所以,公理系统的讨论通常只是半角式化的。一个形式化理论通常表示一个公理系统,例如在
模型论中表述的那样。一个形式化证明是一个证明在形式化系统中的表述。
性质
一个公理系统称为自洽(或称相容、一致性),如果它没有矛盾,也就是说没有从公理同时导出一个命题及其否定的能力。
在一个公理系统中,一个公理被称为独立的,若它不是一个从系统的其它公理可以导出的
定理。一个系统称为独立的,若它的每个公理都是独立的。
虽然独立性不是一个系统的必要需求,自洽性却是必要的。一个公理系统称为完备的,若每个命题都可以导出或其否定可以导出。
模型
公理系统的
数学模型是一个定义严谨的集合,它给系统中出现的未定义术语赋予意义,并且是用一种和系统中所定义的关系一致的方式。具体模型的存在性能证明系统的自洽。
模型也可以用来显示一个公理在系统中的独立性。通过构造除去一个特定公理的子系统的正确模型,我们表明该省去的公理是独立的,若它的正确性不可以从子系统得出。
两个模型被称为
同构,如果它们的元素可以建立一一对应,并且以一种保持它们之间的关系的方式。一个其每个模型都同构于另一个的公理系统称为范畴式的,而可范畴化的性质保证了系统的完备性。
第一个公理系统是欧氏几何。
公理化方法
公理化方法经常被作为一个单一的方法或着一致的过程来讨论。以
欧几里得为榜样,它确实在很多世纪中被这样对待:直到19世纪初叶,在欧洲数学和哲学中古
希腊数学的遗产代表了智力成就(在
几何学家的风格中,更几何的发展)的最高标准这件事被视为理所当然(例如在
巴鲁赫·斯宾诺莎的著作中所述)。
这个传统的方法中,公理被设定为不言自明的,所以无可争辩,这在19世纪逐渐被扫除,这是随着
非欧几里得几何的发展,实分析的基础,
格奥尔格·康托尔的
集合论和
弗雷格在
数学基础方面的工作,以及
戴维·希尔伯特的公理方法作为研究工具的“新”用途而发生的。例如,
群论在该世纪末第一个放到了公理化的基础上。一旦公理理清了(例如,逆元必须存在),该课题可以自主的进展,无须参考这类研究的起源—变换群。
所以,现在在数学以及它所影响的领域中至少有3种“模式”的公理化方法。用讽刺描述法,可能的态度有:
1. 接受我的公理,你就必须承担它们的后果。
2.我拒绝你的公理之一并且采纳另外的模型(I reject one of your axioms and accept extra models)。
3. 我的公理集定义了一个研究领域。
第一种情况定义了经典的演绎方法。第二种采用了博学点,一般化这个口号;它和概念可以和应该用某种内在的自然的广泛性来表达的假设是一致的。第三种在20世纪数学中有显著的位置,特别是在基于
同调代数的课题中。很显然公理化方法在数学之外是有局限性的。例如,在
政治哲学中,导致不可接受的结论的公理很可能被大量拒绝;所以没有人真的统一上面的第一个版本。
#数值逻辑的公理系统
(责任者:奇东,单位:齐东)
一、绪言(《
古今数学思想》书中的道白与评论):《古今数学思想》书中[第四册45页]指出:“
实数系的逻辑结构问题为十九世纪后叶所重视,
无理数被认为是主要难点,然而无理数的意义与性质的发展预先假定了有理数系的建立,对无理数理论不同的贡献者来说,或则认为有理数已为众所确认,无须什么基础,或则认为只给出一些匆促而临时应付的方案,…。[第四册316页]数学的第三种主要的哲学,称为形式派(
形式主义),它的领导人是
戴维·希尔伯特,他从1904年开始从事于这种哲学工作,他在那时的动机是给
数系提供一个不用
集合论的基础,并且确立算术相容性,因为他自己对于几何的相容性的证明已约化成算术的相容性,算术的相容性就成了一个没有解决的关键性问题,…。”,据此可知,我们的前人
格奥尔格·康托尔、戴金、
卡尔·魏尔施特拉斯、希尔伯特等等许多专家,在有理数系还没有完全完整地建立起来的时候,率先建立起了
实数系、实无限的数学理论和
数理逻辑等等,这就是为什么
纯粹数学、初等数学会如此现状的原因之所在,了解
数学基础的发展史、数学真理演变的过程非常重要,否则有理难辩,…,关于对有理
数系、实数系的认识与建立,很显然这一认识真理的顺序、过程有些是被人为颠倒了的过程,如此认识真理已造成了难以觉察到理性认识上的不应拥有的困难与麻烦,且实无限排斥潜无限数学真理,潜无限也排斥实无限,似乎有理难辩,正常的过程应是先认识有理数(域)系形成完整的理性认识、并建立起有理数辩证数值逻辑公理系统,然后建立
实数(系),时至21世纪的高科技与信息时代,提升对有理数、有理数系运算规律的认识,依然不失其必要性、重要性,数学也有若干重大问题需要澄清,…;《
古今数学思想》书中 [第四册324页] 指出:“对于
数学基础的根本问题所提出的解答——经典
集合论公理化、
逻辑主义,
形式主义,直觉主义——都没有达到目的,没有对数学提供一个可以普遍接受的途径。在
库尔特·哥德尔1931年的工作以后的发展,也没有在实质上改变这种状况,…;该书中又指出:韦尔对数学的现状作了恰当的描述:关于数学最终基础和最终意义的问题还是没有解决,我们不知道向哪里去找它的最后解答,…”,这就是
纯粹数学的基本现状,…。《
古今数学思想》[第四册313页]书中还指出:“…,数学中最重要的进展都不是由于要把逻辑形式完美化而得到的,而是由于基本理论本身的变革,是逻辑依靠数学,而不是数学依靠逻辑。”事实上
逻辑与数学相互依赖,数学基本理论自身变革怎样变革、如何变革、从哪里作为起点开始变革至关重要,追根溯源,还是要上溯到2500多年前
毕达哥拉斯时期,从最简单的算术谈起,无容置疑,潜无限数学理论依然是纯粹数学、
应用数学的根基,因为
无理数都取近似值,坚决突破玄学数学自然观的束缚、彻底打破纯粹数学(
数学基础)的“三大数学流派”与“门户”之见,承认接受实无限数学理论千万不能排斥丢掉了潜无限数学真理,…。
向为数学以及为
纯粹数学做出过贡献的历代数学家致以崇高敬意!…。
二、建立起数学数值辩证逻辑公理系统(的雏形):
究竟是到数值逻辑系统外部探寻系统运算规律与深刻内涵?还是在数值逻辑系统内部探寻系统运算规律与深刻内涵?很显然,要在数值逻辑系统内部探寻系统运算规律以及深刻内涵、建立起数学辩证数值逻辑公理系统(的雏形),使数学理论形成完整的理性认识,事实证明,
数理逻辑亦不是万能逻辑,数理逻辑与实无限并未完全揭示出辩证数值逻辑公理系统运算规律与其深刻内涵,初等数学与
纯粹数学的基本理论尚有诸多不足之处,这就是数学实无限理论和数理逻辑无法解决的数学矛盾与问题,关于数学的无限矛盾,实无限、数理逻辑不能解决的数学矛盾与问题,运用潜无限数学理论与潜无限的科学方法深化提升对有理数系统的认识,未尝不可,…,用那10个阿拉伯数字演绎数学真谛,1生2、2生3、“10”个阿拉伯数字派生无限,确切地说正整数
数列: 0,1,2,3,4,5,6,7,8,9,10,……如果从数学的
数论、
集合论、算术与哲学角度出发,运用算术的方法分别选取:1,2,3,4,5,6,7,8,9,10,……,…分别地建立起最基本最原始的幼稚可笑的有理数数列群与子集合(为了节省版面本文分数线用斜线表示,敬请谅解):
第1子系列:0/1,1/1,2/1,3/1,4/1,5/1,6/1,……,
第2子系列:0/2,1/2,2/2,3/2,4/2,5/2,6/2,……,
第3子系列:0/3,1/3,2/3,3/3,4/3,5/3,6/3,……,
第4子系列:0/4,1/4,2/4,3/4,4/4,5/4,6/4,……,
第5子系列:0/5,1/5,2/5,3/5,4/5,5/5,6/5,……,
第6子系列:0/6,1/6,2/6,3/6,4/6,5/6,6/6,……,
第7子系列:0/7,1/7,2/7,3/7,4/7,5/7,6/7,……,
第8子系列:0/8,1/8,2/8,3/8,4/8,5/8,6/8,……,
第9子系列:0/9,1/9,2/9,3/9,4/9,5/9,6/9,……,
第10子系列:0/10,1/10,2/10,3/10,4/10,5/10,6/10,……,
……,……
分别探索在何范畴内各基数间存在着2,3,4,5,6,7,8,9,10,11,12,……的算术(数学)公理——辩证数值逻辑公理系统运算规律:
第1子系列:0/1=0,1/1=1,2/1 =2,3/1=3,4/1=4,5/1=5,6/1=6, ……,
第2子系列、第2环节:
2(0/2+1/2+2/2)=(1/2+2/2+3/2)=(0.5+2/2+1.5)
第3环节:3(0/2+1/2+2/2)=(2/2+3/2+4/2)=(1/1+3/2+2/1)=(1+3/2+2)
第4环节:4(0/2+1/2+2/2)=(3/2+4/2+5/2)=(1.5+4/2+2.5)
第5环节:5(0/2+1/2+2/2)=(4/2+5/2+6/2)=(2/1+5/2+3/1)=(2+5/2+3)
第6环节:6(0/2+1/2+2/2)=(5/2++6/2+7/2)=(2.5+6/2+3.5),……,
第3子系列、第2环节:
2(0/3+1/3+2/3+3/3)=(1.5/3+2.5/3+3.5/3+4.5/3)
=(1/2+2.5/3+3.5/3+3/2)=(0.5+2.5/3+3.5/3+1.5)=(3/3+4/3+5/3)
第3环节:3(0/3+1/3+2/3+3/3)=(3/3+4/3+5/3+6/3)
=(1/1+4/3+5/3+2/1)=(1+4/3+5/3+2)
第4环节:
4(0/3+1/3+2/3+3/3)=(4.5/3+5.5/3+6.5/3+7.5/3)
=(3/2+5.5/3+6.5/3+5/2)=(1.5+5.5/3+6.5/3+2.5)=(7/3+8/3+9/3)
第5环节:5(0/3+1/3+2/3+3/3)=(6/3+7/3+8/3+9/3)
=(2/1+7/3+8/3+3/1)=(2+7/3+8/3+3)
第6环节:
6(0/3+1/3+2/3+3/3)
=(7.5/3+8.5/3+9.5/3+10.5/3)=(5/2+8.5/3+9.5/3+7/2)
=(2.5+8.5/3+9.5/3+3.5)=(11/3 +12/3+13/3),……,
第4子系列、第2环节:
2(0/4+1/4+2/4+3/4+4/4)=(2/4+3/4+4/4+5/4+6/4)
=(1/2+3/4+4/4+5/4+3/2)=(0.5+3/4+4/4+5/4+1.5)
第3环节:
3(0/4+1/4+2/4+3/4+4/4)=(4/4+5/4+6/4+7/4+8/4)
=(1/1+5/4+6/4+7/4+2/1)=(1+5/4+6/4+7/4+2)
第4环节:
4(0/4+1/4+2/4+3/4+4/4)
=(6/4+7/4+8/4+9/4+10/4)=(3/2+7/4+8/4+9/4+5/2)
=(1.5+7/4+8/4+9/4+2.5)
第5环节:5(0/4+1/4+2/4+3/4+4/4)=(8/4+9/4+10/4+11/4+12/4)
=(2/1+9/4+10/4+11/4+3/1)=(2+9/4+10/4+11/4+3)
第6环节:6(0/4+1/4+2/4+3/4+4/4)
=(10/4+11/4+12/4+13/4+14/4)=(5/2+11/4+12/4+13/4+7/2)
=(2.5+11/4+12/4+13/4+3.5), ……,
第5子系列、第2环节:
2(0/5+1/5+2/5+3/5+4/5+5/5)
=(2.5/5+3.5/5+4.5/5+5.5/5+6.5/5+7.5/5)
=(1/2+3.5/5+4.5/5+5.5/5+6.5/5+3/2)
=(0.5+3.5/5+4.5/5+5.5/5+6.5/5+1.5)
=(4/5+5/5+6/5+7/5+8/5)
第3环节:3(0/5+1/5+2/5+3/5+4/5+5/5)
=(5/5+6/5+7/5+8/5+9/5+10/5)
=(1/1+6/5+7/5+8/5+9/5+2/1)
=(1+6/5+7/5+8/5+9/5+2)
第4 环节:4(0/5+1/5+2/5+3/5+4/5+5/5)
=(7.5/5+8.5/5+9.5/5+10.5/5+11.5/5+12.5/5)
=(3/2+8.5/5+9.5/5+10.5/5+11.5/5+5/2)
=(1.5+8.5/5+9.5/5+10.5/5+11.5/5+2.5)
=(10/5+11/5+12/5+13/5+14/5)
第5环节:5(0/5+1/5+2/5+3/5+4/5+5/5)
=(10/5+11/5+12/5+13/5+14/5+15/5)
=(2/1+11/5+12/5+13/5+14/5+3/1)
=(2+11/5+12/5+13/5+14/5+3)
第6环节:6(0/5+1/5+2/5+3/5+4/5+5/5)
=(12.5/5+13.5/5+14.5/5+15.5/5+16.5/5+17.5/5)
=(5/2+13.5/5+14.5/5+15.5/5+16.5/5+7/2)
=(2.5+13.5/5+14.5/5+15.5/5+16.5/5+3.5),
=(16/5+17/5+18/5+19/5+20/5),……,
第6子系列、第2环节:
2(0/6+1/6+2/6+3/6+4/6+5/6+6/6)
=(3/6+4/6+5/6+6/6+7/6+8/6+9/6)
=(1/2+4/6+5/6+6/6+7/6+8/6+3/2)
=(0.5+4/6+5/6+6/6+7/6+8/6+1.5)
第3环节:3(0/6+1/6+2/6+3/6+4/6+5/6+6/6)
=(6/6+7/6+8/6+9/6+10/6+11/6+12/6)
=(1/1+7/6+8/6+9/6+10/6+11/6+2/1)
=(1+7/6+8/6+9/6+10/6+11/6+2)
第4环节:4(0/6+1/6+2/6+3/6+4/6+5/6+6/6)
=(9/6+10/6+11/6+12/6+13/6+14/6+15/6)
=(3/2+10/6+11/6+12/6+13/6+14/6+5/2)
=(1.5+10/6+11/6+12/6+13/6+14/6+2.5)
第5环节:5(0/6+1/6+2/6+3/6+4/6+5/6+6/6)
=(12/6+13/6+14/6+15/6+16/6+17/6+18/6)
=(2/1+13/6+14/6+15/6+16/6+17/6+3/1)
=(2+13/6+14/6+15/6+16/6+17/6+3)
第6环节:6(0/6+1/6+2/6+3/6+4/6+5/6+6/6)
=(15/6+16/6+17/6+18/6+19/6+20/6+21/6)
=(5/2+16/6+17/6+18/6+19/6+20/6+7/2)
=(2.5+16/6+17/6+18/6+19/6+20/6+3.5),……,
第7子系列、第2环节:
2(0/7+1/7+2/7+3/7+4/7+5/7+6/7+7/7)
=(3.5/7+4.5/7+5.5/7+6.5/7+8.5/7+9.5/7+10.5/7)
=(1/2+4.5/7+5.5/7+6.5/7+8.5/7+9.5/7+3/2)
=(0.5+4.5/7+5.5/7+6.5/7+8.5/7+9.5/7+1.5)
=(5/7+6/7+7/7+8/7+9/7+10/7+11/7)
第3环节:3(0/7+1/7+2/7+3/7+4/7+5/7+6/7+7/7)
=(7/7+8/7+9/7+10/7+11/7+12/7+13/7+14/7)
=(1/1+8/7+9/7+10/7+11/7+12/7+13/7+2/1)
=(1+8/7+9/7+10/7+11/7+12/7+13/7+2)
第4环节:4(0/7+1/7+2/7+3/7+4/7+5/7+6/7+7/7)
=(10.5/7+11.5/7+12.5/7+13.5/7+14.5/7+15.5/7+16.5/7+17.5/7)
=(3/2+11.5/7+12.5/7+13.5/7+14.5/7+15.5/7+16.5/7+5/2)
=(1.5+11.5/7+12.5/7+13.5/7+14.5/7+15.5/7+16.5/7+2.5)
=(13/7+14/7+15/7+16/7+17/7+18/7+19/7)
第5环节:5(0/7+1/7+2/7+3/7+4/7+5/7+6/7+7/7)
=(14/7+15/7+16/7+17/7+18/7+19/7+20/7+21/7)
=(2/1+15/7+16/7+17/7+18/7+19/7+20/7+3/1)
=(2+15/7+16/7+17/7+18/7+19/7+20/7+3)
第6环节:6(0/7+1/7+2/7+3/7+4/7+5/7+6/7+7/7)
=(17.5/7+
重庆轨道交通18号线5/7+19.5/7+20.5/7+21.5/7+22.5/7+23.5/7+24.5/7)
=(5/2+18.5/7+19.5/7+20.5/7+21.5/7+22.5/7+23.5/7+7/2)
=(2.5+18.5/7+19.5/7+20.5/7+21.5/7+22.5/7+23.5/7+3.5)
=(21/7+22/7+23/7+24/7+25/7+26/7+27/7),……,
……,……
(一)、数学数值辩证逻辑公理系统(以下简称为数值逻辑公理系统或系统):
关于上述初等数学与
纯粹数学的起点,即最简单、最原始幼稚可笑的未被引起人们足够重视的数值运算我们无法将其一一列出,上述运算是否蕴涵着数学数值逻辑系统运算规律和深刻的内涵?单凭直觉无法正确回答,…,目前,只能实事求是,实话实说,常言道,最简单的、最质朴的恰恰是最深奥的、最难以理解接受的,数学是被应验了,我们将上述运用
亚里士多德潜无限数学理性认识和在
自然辩证法(哲学)指导下、在
数论、
集合论内涵条件下形成的特殊运算规律与普遍运算规律以及深刻内涵辩证地概括地归纳为:总之,数学辩证数值逻辑系统的各个子系列除了第1系列0/1=0,1/1=1,2/1=2,3/1=3,4/1=4,5/1=5,6/1,7/1,8/1,9/1,10/1,…例外,上述辩证数值逻辑公理系统运算规律,系统的各个子系列无论是在
奇数子系列、还是在偶数子系列范畴内均派生子集合,派生子集合是指(既约分数)1/2,3/2,5/2,7/2,9/2,11/2,13/2,15/2,17/2,……从系统发展变化的过程中产生分化出来占据整数的位置充分地十足地体现其分数相对整性质,因为1/2是最大的分数单位,所以拥有分数相对整性质;或者说
小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,…在系统在各个子系列发展变化的过程中纷纷产生分化出来、均占据整数的位置,揭示着它们的
绝对值比其他小数的绝对值相对整装,小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,…充分地十足地体现其小数相对整·性质,蕴涵着完整的算术(数学)公理2,3,4,5,6,7,8,9,10,11,12,…的
倍数关系,2是数学(算术)的首要公理,当系统子系列在10,100,1000,10000,…的范畴内:均派生子集合,不仅揭示着
小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,…拥有相对整·性质,而且在向纵深发展地潜无限的过程中有太多太多的基数是超越
无理数数值的有限形式、甚至与其相吻合,形成有限·不
循环小数或潜无限·不循环小数(例如31415926/10000000=3.1415926等等a_1/10+a_2/〖10〗^2 +a_3/〖10〗^3 +a_4/〖10〗^4 +a_5/〖10〗^5 +……+a_n/〖10〗^n 是超
超越数的有限形式,是
十进制小数的典型代表,在此基础上引进有限·不循环小数(潜
无限不循环小数)的概念与定义,有限·不循环小数(潜无限·不循环小数)是数学真理最新发现之一,譬如:
圆周率π=3.141592,3.1415926,1.4142,1.41421356,2.17181938,…等等就是有限·不
循环小数(潜无限·不循环小数),具有替代
无理数数值巨大的数学实际意义与应用价值(无理数的近似值),…;现将数学数值辩证逻辑公理系统各个子系列笼统的、通项的表达为(仅以正的为代表,符号↓:意指系统的各个子系列均相互派生子集合):
{[0~1]}1↓{[1~2]}3↓ {[2~3]}5↓…(此
结构式上下
隔行扫描对应莫散开)
{[1/2~3/2]}2 ↓ {[3/2~5/2]}4 ↓ {[5/2~7/2]}6 …
或者表达为:
{[0~1]}1↓{[1~2]}3↓ {[2~3]}5↓…(此结构式上下交错对应莫散开)
{[0.5~1.5]}2 ↓ {[1.5~2.5]}4 ↓ {[2.5~3.5]}6 …
或者表达为:
{[0≤X1≥1]}1↓{[2≤X5≥3]}5↓{[(a-1)/2≤Xa≥(a+1)/2]}a,a=1,2,3,4,5,6,…,
{[0.5≤X2≥1.5]}2↓{[1.5≤X4≥2.5]}4↓{[(a-1)/2≤Xa≥(a+1)/2]}a
1∑{[0≤X1≥1]}1=∑{[0≤X1≥1]}1, 2∑{[0≤X1≥1]1= ∑{[0.5≤X2≥1.5]}2,3∑{[0≤X1≥1]}1=∑{[1≤X3≥2]}3,4∑{[0≤X1≥1]}1=∑{[1.5≤X4≥2.5]}4,5∑{[0≤X1≥1]}1=∑{[2≤X5≥3]}5,6∑{[0≤X1≥1]1=∑[2.5≤X6≥3.5]}6,a∑{[0≤X1≥1]}1=∑{[(a-1)/2≤Xa≥(a+1)/2]}a,a=1,2,3,4,5,6,7,8,……,
系统中的∑{[0~1]}1、∑{[1~2]}3、…意指系统各个子系列1,3,5,7,9,11,13,…
奇数环节上的基数的和,∑{[0.5~1.5]}2、∑{[1.5~2.5]}4、…意指系统各个子系列2,4,6,8,10,12,…偶数环节上的基数之和,{[0.5~1.5]}、{[1.5~2.5]}、…亦是系统的子集合,∑{[0~1]}1与∑{[0.5~1.5]}2它们是集合族、有无穷个子集合或有无穷个数组,其他依次类推,很显然,假如说{[0~1]}和{[0.5~1.5]}的基数是实无限,那么它的基数有理数与
无理数一下子就会全部冒出来,究竟具体有多少、是多少?实无限无人无法具体知晓、如果采纳实无限手段依然会遇到我们的前人所遭遇的结果,因此务必突破传统数学思维观念实无限与传统经典
数论、
集合论的束缚,本文并不否定实无限的科学性、亦不否定无理数的客观存在,亦不否认
数理逻辑比数值逻辑的无比优越性,只是希望承认接受实无限的人们与专家,千万莫否定、排斥掉了潜无限数学理论,X1,X2,X3,X4,X5,Xa,均为有科学秩序的有理数,并非一堆毫无秩序有理数,式中的a=1,2,3,4,5,6,…,因此务必运用科学的潜无限数学理论来认识、解决数学矛盾与问题,再次强调说明,符号↓:意指(相互)派生子集合,在数值逻辑公理系统各个子系列从第2系列起各个子系列均(相互)派生子集合,具有普遍意义,(相互)派生子集合是指在数学辩证数值逻辑公理系统运算过程中,分数(既约分数)±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,…从系统发展变化的过程中产生分化出来占据整数的位置充分地十足地体现其分数·相对整·性质,因为1/2是最大的分数单位,所以拥有分数·相对整·性质(实际上无论是在
奇数系列还是在偶数系列范畴内系统均派生分数形式的子集合,为了节省版面本文没有反复提出,敬请谅解),换言之,
小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…从系统发展变化过程中产生分化出来,占据整数位置,充分地十足地体现其小数·相对整·性质,为奇数±1,±3,±5,±7,±9,±11,±13,±15,±17,…能被2相对·整除提供科学的理论依据,系统相互派生子集合,也包涵着整数0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,…由系统发展变化的过程中从系统的有理数中分化出来体现整数性质,为偶数0,±2,±4,±6,±8,±10,±12,…能被2整除提供科学依据,因此说在数值逻辑公理系统中相互派生子集合才是切合实际的,公理系统蕴涵着完整的辩证数值逻辑运算规律(系统蕴涵着完整的数学或者说算术公理)2,3,4,5,6,7,8,9,10,11,12,…的
倍数关系、或者说2,3,4,5,6,7,8,9,10,11,12,…均是数值逻辑公理系统的算术(数学)公理,2是数学公理系统的首要公理,系统具有无穷个子系列、用符号n表示,n=2,3,4,5,6,7,8,9,10,…采纳潜无限的方法去把握,系统的各个子系列具有无穷个自然连锁环节、用符号a表示,a=1,2,3,4,5,6,7,8,9,10,…采纳潜无限的方法去把握,构成永不枯竭的无限的连锁群体和统一体,是数值逻辑对立统一规律的真实体现,是我们人类从数学的必然王国迈向自由王国的有效途径,是我们人类集体智慧的一大体现与结晶,数学辩证数值逻辑公理系统是无限开放着的公理体系,纵、横向上只有起点而无终点!它永远倾听人类实践的呼声、满足人类实践的需求,我们人类实践永远不可能达到实无限的程度;很显然,在数学辩证数值逻辑公理系统中的各个子系列无论是在偶数还是在
奇数环节上均相互派生子集合,尤其分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,……或者说
小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…自告奋勇势不可挡、在发展变化的过程中纷纷产生分化出来担负起相对整·性质的重任,尽管这样的分数与其对应着的小数极其简单、然而其基本原理与哲理却深刻、深奥的难以理解与接受、甚至不可理喻,只有运用辩证逻辑进行辩证认识、辩证分析、辩证推理,…;概括而言,偶数能被2整除,
奇数不能被2整除、奇数(包括素数)却能被2相对·整除,奇数与偶数相反相成对立统一,蕴涵着哲学的对立统一规律,数值逻辑公理系统为其提供完整地科学依据,这是数学自然观、科学观的重大认识问题,要做出正确选择,要突破
传统数学实无限、传统经典
数论与
集合论的束缚,显然,广义·数论、广义·集合论、算术、哲学(
自然辩证法)四位一体、辩证统一,自然辩证法(现代哲学)以对立统一规律为切入点注入初等数学、
纯粹数学,为数学真理指明了正确的前进方向,至此,数学(算术)已有科学根据,需要引入数学新概念与定义:譬如分数·相对整·性质、
小数相对整·性质、小数·单位、最大的小数·单位是0.5等等诸多概念与定义,有理数属于离散量的范畴,尽管如此,在数轴上、坐标系、在数值逻辑公理系统中得以体现,广义·整数与
无理数一样均客观存在、拥有客观存在性,问题的关键所在就是如果理解接受了派生子集合、分数与小数的相对整·性质,其他数学矛盾与问题便会迎刃而解,或者说难度会大大缩减,…;公理系统蕴涵着算术的基本法则,关于无理数需要具体问题具体分析、具体对待、具体构造无理数数值,引进
实数、实数系千万莫排斥掉了潜无限数学理论,…。
(二)、数学数值辩证逻辑公理系统揭示出丰富深刻内涵、数学概念与问题:
1、传统经典的
数论与
集合论的公理系统凸显巨大的局限性:
很显然,依照传统经典的数论与集合论的理性意识,系统的各个子系列运算规律只有3∑{[0~1]}=∑{[1~2]},5∑{[0~1]}=∑{[2~3]},7∑{[0~1]}=∑{[3~4]},9∑{[0~1]}=∑{[4~5]},…即只有
奇数3,5,7,9,11,13,15,17,19,21,23,…是算术(数学)公理,没有偶数
倍数的统一体,经典的数论与集合论无法回答偶数2,4,6,8,10,12,14,16,18,20,22,24,26,…是否也是系统的算术(数学)公理,传统经典的数论与集论公理的公理系统凸显巨大的局限性,即系统没有偶数倍数的算术(数学)公理,
皮亚诺公理并非算术的全部,如何探索寻求数值逻辑公理系统成为算术(数学)的首要问题,提升到哲学与数学的高度,它涉及到人们数学观的认识问题,需要艰难地突破传统经典的
数论与
集合论的重大束缚,…;
2、双·素数:除了能被1和自身整除外,还仅能被2和一个素数互为整除的(仅以正的为代表)偶数,把具有这样性质的偶数称之为双·素数,双·素数无穷无尽,例如6,10,14,22,26,34,38,……,其特征,能表示为两个等值的素数之和,即6=3+3,10=5+5,14=7+7,22=11+11,26=13+13,34=17+17,38=19+19,……,双素数星星点点揭示着
哥德巴赫猜想拥有客观存在性,双素数与素数相互对应:
6,10,14,22,26,34,38,46,58,……
3, 5, 7,11,13,17,19,23,29,……(上下相互对应)
3、偶素数与素数:2既是一个素数又是一个偶数,将2称之为偶素数,偶素数2具有唯一性,那么就可以将奇素数3,5,7,11,13,17,19,...简称为素数,简化奇素数的名称。
4、关于哥德巴赫猜想理论上如何认识?在数值逻辑公理系统中也是不可能回避的数学矛盾与问题:
{[0~1]}1↓{[1~2]}3↓ {[2~3]}5↓…(此
结构式上下
隔行扫描对应莫散开)
{[0.5~1.5]}2 ↓ {[1.5~2.5]}4 ↓ {[2.5~3.5]}6 …
第1环节:1∑{[0~1]}1=∑{[0~1]}1,第2环节:2∑{[0~1]}1=∑{[0.5~1.5]}2,
第3环节:3∑{[0~1]}1=∑{[1~2]}3,第4环节:4∑{[0~1]}1=∑{[1.5~2.5]}4,
第5环节:5∑{[0~1]}1=∑{[2~3]}5,第6环节:6∑{[0~1]}1=∑{[2.5~3.5]}6,…,
……,…;
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,……均为数学(算术)公理,2是公理系统首要公理,…,如果将它们展开为数值逻辑公理的另一种表达形式:
第2环节:1+1=2,
第3环节:1+2=3、2+1=3,
第4环节:1+3=4、2+2=4、3+1=4,
第5环节:1+4=5、2+3=5、3+2=5、4+1=5,
第6环节:1+5=6、2+4=6、(3+3)!=6、4+2=6、5+1=6,
第7环节:1+6=7、2+5=7、3+4=7、4+3=7、5+2=7、6+1=7,
第8环节:1+7=8、2+6=8、[3+5]=8、4+4=8、5+3=8、6+2=8、7+1=8,
第9环节:1+8=9、2+7=9、3+6=3+(3+3)!=9、4+5=9、5+4=9、6+3=9、…、8+1=9,
第10环节:1+9=10、2+8=10、[3+7]=10、4+6=10、(5+5)!=10、…、8+2=10、9+1=10,
第11环节:1+10=11、2+9=11、3+8=11、4+7=11、5+6=5+(3+3)!=11、…、7++4=11、…,
第12环节:1+11=12、2+10=12、3+9=12、4+8=12、[5+7]=12、6+6=12、…、8+4=12、…,
…在1+k=n(k=1,2,3,4,5,6,…,当k=5,6,7,8,9,…,n= 2, 3, 4, 5,6,…)向k+1=n的转换过程中总是蕴涵着
哥德巴赫猜想,运算规律不仅具有算术公理1+1=2的数学意义,也蕴涵着经典
数论“1+1”的重大意义,我们无法否定它的客观存在性,算术公理1+1=2与数论的“1+1”二者相辅相成,一脉相承,数论的“1+1”其实它就是数值逻辑公理系统中各个子系列偶环节上的特殊算术公理,数论的“1+1”是数值逻辑公理系统中各个子系列偶数环节上的运算规律,一定要在数值逻辑公理系统中辩证地认识、正确地看待它,数值逻辑公理系统不可能回避如此重大数学矛盾——
哥德巴赫猜想:
(1)、哥德巴赫偶数猜想:大于等于6的偶数=(一个素数+另一个素数)
数论的“1+1”与算术的1+1=2在数值逻辑公理系统中一脉相承,在算术公理1+1=2的数值逻辑公理系统中蕴涵着数论的“1+1”,数论的“1+1”是数值逻辑公理系统各个子系列偶数环节上的算术公理、是数值逻辑公理系统中偶数环节上的运算规律:譬如:6=3+3,8=3+5,10=3+7,12=5+7, 14=3+11,16=5+11,18=5+13,……,无穷无尽,拥有客观存在性(当然是辩证推理),既不肯定也不否定其真实性、模棱两可、不置可否,这背离了数学(逻辑)
排中律,很显然,传统经典的
数论要证明的“1+1”亦是算术公理,依然属于算术的范畴与算术问题,经典的数论要证明的“1+1”是完美地,…,弄一个足够多的素数表意义非凡、其意义不亚于证明了“1+1”真实性;
(2)、哥德巴赫
奇数猜想:大于等于9的奇数=(一个素数+一个双素数)=3个素数之和:譬如:9=3+6=3+3+3,11=5+6=5+3+3,13=3+10=3+5+5,15=5+10=5+5+5,17=7+10=7+5+5,19=5+14=5+7+7,…;很显然,哥德巴赫奇数猜想亦是辩证数值逻辑公理系统中奇数环节上的算术公理,是系统奇数环节上的运算规律但属于特殊运算规律,拥有客观存在性,这当然是运用逻辑辩证推理;
哥德巴赫猜想——
数论的“1+1”所证明的真实性、以及逻辑上所要摘取的是十分完美地!…。
5、分数·整(整·分数):0/1=0,1/1=1,-1/1=-1,2/1=2,-2/1=-2,3/1=3,-3/1=-3,4/1=4,-4/1=-4,5/1=5,-5/1=-5,6/1=6,-6/1=-6,…尽管是分数形式,数值逻辑公理系统揭示着依然体现整数性质、是系统的特殊规律,因此将其统称为分数·整(整·分数),分数·整与整数相互对应,整·分数是公理系统的一个特殊规律,均可书写为a/1。
6、
小数·整(整·小数):无限
循环小数0.9(·)=1,小数形式依然体现整数性质,将其简称为小数·整(整·小数)。
7、分数单位:简言之,分子是1、分母是等于、大于2的正整数的分数就是分数单位,譬如1/2,1/3,1/4,1/5,1//6,1/7,1/8,1/9,1/10,……就是分数单位,最大的分数单位是1/2,在数轴上、坐标系、数值逻辑公理系统中得以体现,分数单位、最大的分数单位1/2是一个基本单位与相对整体;
8、
小数·单位:什么是小数·单位目前尚未形成统一认识,如果将分数单位1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,…对应下的小数0.5,0.3…,0.25,0.2,0.1666…,0.142857…,0.125,0.1…,0.1,…界定为小数·单位,那么就可以将小数0.5,0.3…,0.25,0.2,0.1666…,0.142857…,0.125,0.1…,0.1,…统称为小数·单位,小数·单位涵盖着小数
计数单位,小数·单位的意义比小数计数单位的意义更广泛,很显然,最大的小数·单位·是0.5,
小数单位与最大的小数·单位·是0.5是数学真理最新发现之一;小数·单位、最大的小数·单位0.5的数学与哲学意义,就是最大的·小数·单位0.5为小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…拥有相对整·性质提供
科学理论根据与支持,小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…拥有相对整·性质又为奇数(含素数)能被2相对·整除提供科学理论根据与支持,这就是
小数·单位、最大的·小数单位·0.5的数学与哲学意义!因此,引进小数·单位、最大的·小数·单位0.5是正确的、切合实际的、是非常必要的!小数·单位、最大的·小数·单位·是0.5拥有客观存在性,在数轴上、坐标系中、数值逻辑公理系统中得以体现,是不可分割的相对整体。
9、小数
计数单位:小数计数单位是指小数计数方法中,
小数点右边十分位、百分位、千分位、…上的最具代表性的小数单位,分别为:0.1(1/10),0.01(1/100),0.001(1/1000),…,因为最大的小数计数单位0.1小于最大的·小数·单位0.5与最大的分数单位1/2,所以不能够揭示出小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的相对整·性质,导致数学真理复杂化与更加抽象化,这就是
小数计数单位的局限性,…。
10、分数的内涵:所谓分数的内涵地地道道、千真万确包括着分数的绝对值(数值)、分数单位、分数单位的个数(份数)、最大的分数单位是1/2、等等概念,因此分数的绝对值(数值)仅仅是分数内涵的一部分,分数的
绝对值包含着分数单位与分数单位的
个数、这是至关重要的,要充分运用好分数单位、最大的分数单位1/2、分数单位的个数(份数)等等概念进行辩证认识、辩证分析分数的深刻内涵,深化提升对有理数的理性认识,有必要剖析分数的内涵,…。
11、分数·相对整·性质:其他分数的绝对值对比分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,9/2,-9/2,…的绝对值更零散,换言之,分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,9/2,-9/2,…对比其他分数的
绝对值而言相对整装,在数值逻辑公理系统中,把这一相比较而得到的相对整·性质统称为分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,9/2,-9/2,…的相对整·性质,简称为分数·相对整·性质,为什么会拥有分数·相对整·性质、因为分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,±15/2,±17/2,±19/2,[(Z±1/2),Z=0,±1,±2,±3,±4,±5,±6,±7,……]的绝对值的分数单位均是最大的分数单位1/2,最大的分数单位1/2决定着它们的
绝对值拥有分数·相对整·性质,可以一次全部确定下来,因为这是规律,无需逐一验证,其他分数不具备相对整·性质——因为其他分数的分数单位1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,…均小于最大的分数单位1/2,所以其他分数的绝对值更零散,因此可以一次彻底排除,无需逐一验证,这也是规律,千万莫产生误解,并非所有的分数都具有相对整·性质、更不是分数的绝对值越大才越具有相对整·性质,只有分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,±15/2,±17/2,±19/2,[(Z±1/2),Z=0,±1,±2,±3,±4,±5,±6,±7,……]的
绝对值拥有相对整·性质,这是由最大的分数单位1/2决定着分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,±15/2,±17/2,…的绝对值拥有相对整·性质,在数值逻辑公理系统中占据整数的位置充分地十足地体现其分数·相对整·性质,分数·相对整·性质的内涵与
外延仅仅适用于分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,±15/2,±17/2,…的范畴,不能超越了此范畴,否则就是对分数·相对整·性质的误读、误解,…;分数·相对整·性质是“分数·相对整”的特殊性质、特殊规律,是最抽象、最深奥、最为“弯弯绕”的算术(数学)真理;务必需要说明,分数·相对整(相对整·分数)与整数(分数·整)是具有差异性、它们是异中之同、差异中的共性与
同一性,并非等同的共性,因此既要认识到分数·相对整与整数的差异性、又要认识到分数·相对整与整数的差异中的共性与同一性。
12、分数·相对整(相对·整分数):将分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,±15/2,±17/2,±19/2,[(Z±1/2),Z=0,±1,±2,±3,±4,±5,±6,±7,……]以及其
绝对值所拥有的相对整·性质统称为分数·相对整,也就是把正分数·相对整与负分数·相对整统称为分数·相对整,分数·相对整拥有相互矛盾的双重性质,其一是分数性质,其二是分数·相对整·性质,…。
14、
小数的内涵:所谓小数的内涵地地道道、千真万确包涵着小数的绝对值、小数·单位、小数·单位的·个数、最大的·小数·单位是0.5、小数计数单位、小数计数单位的
个数、最大的小数计数单位是0.1等等概念,因此小数的绝对值(数值)仅仅是小数内涵的一部分,需要了解理解消化小数·单位、小数·单位的·个数、最大的·小数·单位是0.5等等概念与含义,小数的绝对值不仅包含着小数
计数单位与小数计数单位的个数,最大的小数计数单位是0.1,而且小数的
绝对值还包含着小数·单位与小数·单位的·个数、最大的·小数单位·是0.5,这是至关重要的,要充分运用好小数·单位、
小数单位的·个数、最大的·小数·单位0.5等等概念辩证认识、辩证分析小数的深刻内涵,深化提升对有理数的理性认识,有必要深度剖析小数的深刻内涵,…。
15、小数·相对整·性质:先举例说明,例如(以
十进制分数、十进制小数为例):为了便于理解接受在举例之前先以小数
计数单位为例:譬如小数0.9、0.87、0.988、0.7778888、…,小数0.9=9×0.1,即小数0.9包含9个0.1,小数0.87=87×0.01即0.87包含87个0.01,小数0.988=988×0.001即0.988包含988个0.001,
小数0.7778888=7778888×0.0000001即0.7778888包括7778888个0.0000001,…这些小数的小数计数单位分别是0.1、0.01、0.001、0.0000001、…,最大的小数计数单位是0.1;以分数单位与小数单位举例说明(与小数
计数单位以及小数计数单位的个数相类似)即:
1/2=0.5=1×1/2=1×0.5,即0.5包括1个0.5、1/2包括1个1/2;
2/3=0.6=2×1/3=2×0.3…,即0.6…包括2个0.3…、2/3包括2个1/3;
3/4=0.75=3×1/4=3×0.25,即0.75包括3个0.25、3/4包括3个1/4;
3/5=0.6=3×1/5=3×0.2,即0.6包括3个0.2、3/5包括3个1/5;
5/6=0.8333…=5×1/6=5×0.1666…,即0.8333…包括5个0.1666…、5/6包括5个1/6;
3/7=0.428571…=3×1/7=3×0.142857…,即0.428571…包括3个0.142857…、3/7包括3个1/7;
…很显然,
小数·单位0.3…,0.25,0.2,0.1666…,0.142857…,0.125,0.1…,0.1,……均小于最大的·小数·单位·0.5,所以,小数0.6…,0.75,0.6,0.8333…,0.428571…,0.625,0.7…,0.9,…的
绝对值均比±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的绝对值更零散,换言之,小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的绝对值均比其他小数的绝对值·相对·整装,在数值逻辑公理系统
中将这一相比较而言得到的相对整·性质统称为小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的绝对值的
小数·相对整·性质,为什么它们会拥有相对整·性质,因为小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的
绝对值的小数·单位均是最大的·小数·单位0.5,最大的·小数·单位·0.5决定着小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的绝对值拥有相对整·性质,可以一次全部确定下来,无需逐一验证,这是规律,其他小数不具备·相对整·性质、因为其他小数的·
小数单位0.3…,0.25,0.2,0.1666…,0.142857…,0.125,0.1…,0.1,…均小于最大的·小数·单位·0.5,可以一次彻底排除,无需逐一验证,这也是规律,本文为了便于人们理解,在前面才如此举例如此说明的,因此,小数的内涵不仅包括小数的
绝对值还包含着小数·单位、小数·单位的个数、最大的·小数·单位·是0.5,而且小数·单位与分数单位相互对应、最大的·小数·单位0.5与最大的分数单位1/2互相对应(因为1/2=0.5所以最大的·小数·单位0.5并非凭空而来的,需要形成理性认识)、
小数·单位的个数与分数单位个数(份数)相互对应,最大的·小数·单位·0.5以及公理系统为小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的
绝对值拥有相对整·性质提供理论依据与支持,因为0.5是最大的·小数·单位·无与伦比,小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…绝对值的·相对整·性质又为奇数±1,±3,±5,±7,±9,±11,…能被2相对·整除提供理论依据与支持,再次说明,并非所有的
小数也不是小数的绝对值越大越体现·小数·相对整·性质,小数·相对整·性质的内涵与外延仅仅适用于小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…的范畴,否则就是对小数·相对整·性质的误读、误解,…。
16、小数·相对整(相对整·小数):将小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,±7.5,±8.5,±9.5,±10.5,[(z±0.5),z=0,±1,±2,±3,±4,±5,±6,±7,……]以及其
绝对值所拥有的相对整·性质统称为小数·相对整,也就是将正小数相对整与负
小数·相对整统称为小数·相对整,小数·相对整其绝对值具有相互矛盾的双重性质,一是小数·相对整·性质,二是普通小数性质,…。
17、1+1=2蕴含着的基本原理与对立统一规律:偶数能被2在抽象意义下自然整除,
奇数不能被2在抽象意义下自然整除、奇数(包括素数)却能被2在抽象意义下·相对·整除,因为小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…拥有相对整·性质,为奇数(包括素数)能被2相对·整除提供科学的理论依据,1+1=2或者说2是数学首要公理,
哥德巴赫猜想——
数论的“1+1”是数值逻辑公理系统中偶环节上的算术公理拥有客观存在性,既不肯定也不否定模棱两可,不置可否,这不符合
排中律;其哲学意义(哲理):偶数能被2在抽象意义下自然整除,奇数不能被2在抽象意义下自然整除、奇数(含素数)却着实能被2在抽象意义下·相对·整除,传统意义的偶数能被2整除、奇数不能被2整除是指奇数与偶数二者的排斥性、对立性、差异性,偶数能被2整除、
奇数不能被2整除、奇数却能被2在抽象意义下·相对·整除是指奇数和偶数的异中之同、差异中的共性与
同一性,恰好与哲学的对立统一规律相吻合,因此说,奇数与偶数(整数与分数·相对整或整数与小数·相对整)相反相成对立统一, 1+1=2蕴涵着极其深刻的数值逻辑对立统一规律,换言之奇数与偶数蕴涵着哲学的对立统一规律,以上所谈就是算术公理1+1=2蕴涵着的基本原理与哲理,哲学(自然辩证法)以对立统一规律为切入点注入
纯粹数学、注入初等数学,为算术(数学)公理1+1=2与数论的“1+1”指明了正确的前进方向!为什么·1+1=2,并非质疑算术(数学)公理1+1=2的正确性,而是科学地回答算术(数学)公理1+1=2蕴涵着的基本原理与哲理;
应用数学顺应了1+1=2的
客观规律,并得到人类无数次实践的检验与证明,早已被实践证明了是正确的
自然科学真理,纯粹数学(数学基础)的理论依然处于探索之中,这就是纯粹数学(数学基础)的基本现状,…;常言道,最简单的、最质朴恰恰是最深奥的,数学被应验了,为什么·1+1=2,一个最简单的数值逻辑,蕴涵着最深刻的真理对立统一规律、广义·整数、广义·数学真理。
自然数与正整数、单位“1”与自然“1”的差异:算术公理1+1=2是科学抽象的,1+1=2与正整数是相对于广义·单位“1”而言,单位“1”的含量绝对统一,1+1=2并非自然“1”的意义,事实上自然数与正整数既有差异又有联系,自然数是相对于自然“1”而言,正整数是相对于广义·单位“1”而言,正整数把自然数提升到了抽象的科学高度,由于自然数、时常因单位“1”不统一、“含金量”不一致,如果对自然数直接进行运算是有很大的局限性——有时正确、有时有偏差,换言之不是任何条件下、任何时候都正确,我们人类是聪明智慧的,有了数学的广义·单位“1”、正整数、整数,消除了自然数的局限性;数学中的整数拥有科学抽象的广义·单位“1”,相对整·分数拥有广义的科学抽象最大的·分数单位“1/2”、相对整·
小数拥有广义的科学抽象最大的·小数·单位“0.5”,这就是数学(算术)的最为抽象的数学意义,依照逻辑、概念、定义分数就是分数、拥有分数性质、小数就是小数、拥有小数性质,然而却偏偏冒出一个小数·相对整·性质与分数·相对整·性质来,考验人类科学的勇气与智慧!…。
18、广义·整数:将整数与分数·相对整统称为广义·整数,即本文将0,±1/2,±1,±3/2,±2,±5/2,±3,±7/2,±4,±9/2,±5,±11/2,±6,±13/2, {[Z*(±1/2)],Z=0,1.2,3,4,5,6,7,8,9,10,……}统称为·广义·整数;亦可以将整数和
小数相对整统称为广义·整数,换言之,即本文将0,±0.5 ,±1 ,±1.5,± 2,±2.5,±3,±3.5,±4,±4.5,±5,±5.5,±6,±6.5,[(±0.5*Z),Z=0,1,2,3,4,5,6,7,8,……]统称为广义·整数;广义·整数蕴涵着整数,正、负分数·相对整,正、负小数·相对整的数学意义;广义·整数、广义·数学真理为
量子力学奠定坚实基础、揭示着大
宇宙中微观世界的
原子、
中子、
质子、核外电子,
费米子、
玻色子等等粒子的某些运动(
自旋)规律,...;在量子力学
中将分数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,……或者说
小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,……统称为
半整数或者叫作
量子数,实际上它们就是离散量的有理数,因此说:半整数±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,……与分数相对整±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,±13/2,……或小数相对整±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,……内涵与外延是完全等价的,没有什么差异,就如同质数就是素数、素数就是质数其内涵完全等价相类同,…,
费米子的
自旋规律分别遵循±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,…、
玻色子的自旋规律分别遵循0,±1,±2,±3,±4,±5,…,因此
量子力学证明将0,±1/2,±1,±3/2,±2,±5/2,±3,±7/2,±4,±9/2,±5,±11/2,±6,±13/2, {[Z*(±1/2)],Z=0,1.2,3,4,5,6,7,8,9,10,……}或0,±0.5 ,±1 ,±1.5,± 2,±2.5,±3,±3.5,±4,±4.5,±5,±5.5,±6,±6.5,[(±0.5*Z),Z=0,1,2,3,4,5,6,7,8,……]统称为广义整数是切合实际的。
19、广义·数学真理:偶数能被2整除,奇数不能被2整除、奇数(包括素数)却能被2·相对·整除、奇数与偶数相反相成、对立统一,蕴涵着哲学的对立统一规律,为什么·1+1=2、潜无限·理性认识、实无限·理性认识、广义·整数、辩证·数值·逻辑、数理逻辑等等内涵的数学真理统称为广义·数学真理,广义·整数是数学真理最新发现之一。
20、潜无限:…。21、实无限:…。
22、有理数:将广义·整数与分数统称为有理数,广义·整数包含着整数(分数·整)、相对整·分数,分数包含着分数·相对整、普通分数;也可以将广义·整数与小数统称为有理数,广义·整数包含着整数与小数·相对整,
小数包含着·小数·相对整、无限循环小数、有限·循环小数、有限·不循环小数(潜无限·不
循环小数)、普通小数。
23、有理数系:事实证明,完全有必要把有理数(域)提升到有理数系统高度去把握,将有理数数值逻辑公理系统和深刻内涵统称为初等数学有理数系统、简称为有理数系(统),有理数系是无限开放着的数值·逻辑·公理体系、永远不会终极、永远不会枯竭的数值·逻辑·公理体系,纵横向上只有起点而无终点,正如人文无限和哲学无限的内涵——无穷无尽,一脉相承;有理数系并无什么缺憾,因为有理数系蕴涵着潜无限·不循环小数,尽管潜无限·不循环小数还不是真正的无理数,它却是无理数的化身、拥有无理数的要素和成分,潜无限·不循环小数具有
无理数的应用价值,实际上是有理数与潜无限·不循环小数为初等数学与
应用数学奠定着坚实的基础,数学也要实事求是,当然有理数(域)系不能替代
实数系,…。
24、实数:把有理数和无理数统称为实数,…。25、实数系:参见数学词典,…….
26、广义·整数、广义·数学真理客观的科学证据:广义·整数、广义·数学真理究竟是正确的还是错误的?是数学真理还是数学谬误?如果属于数学真理会有什么应用价值?它困扰、困惑着许多的人们,广义·整数有何意义?以往的确无法正确回答如此数学问题,… ;不久前,一次偶然的机遇我看到了
量子力学,
泡利不相容原理等等,我发现了科学证据,数学潜无限、离散量、广义·整数原来是量子力学的基础,原来·广义·整数揭示着
宇宙中微观世界的
原子、
中子、
质子、核外电子等等粒子、
费米子、
玻色子的
自旋规律,整数与分数·相对整(
小数相对整)的数值·逻辑·对立统一规律揭示着,无论是宏观世界还是微观世界都蕴含着对立统一规律,对立统一规律是宇宙的普遍规律,费米子与玻色子的自旋运动规律亦蕴涵着对立统一规律,譬如费米子的自旋规律分别遵循±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,…、玻色子的自旋规律分别遵循0,±1,±2,±3,±4,±5,…,因此广义·整数、广义·数学真理为
量子力学奠定坚实基础,量子力学的
半整数又为广义·整数、广义·数学真理提供客观上的科学证据与客观支持,…,潜无限、广义·整数、广义·数学真理的确派上了用场,尽管我们的前人在量子力学中对形如(Z+1/2)的数称之为半整数,的确亦尚未对半整数形成完整的理性认识,半整数从直觉上已意识到了是介于整数与普通分数的中间数或者说是介于整数与普通
小数的中间数,潜意识中已带有“整或相对整”的性质了、但又不同于整数的性质,广义·整数、广义·数学真理拥有多方位实际的应用价值,
半整数拥有·半整·性质,半整数与分数·相对整、小数·相对整相吻合、巧合,不仅如出一辙,半整数拥有半整性质,半整性质与相对·整性一脉相承,半整数与分数·相对整、小数·相对整其内涵与外延、数值完全等价,半整数与整数相反相成对立统一,蕴含着哲学的对立统一规律,…;人们生活中的用语:半小时、半点新闻、半天、半月、半年、
东半球、西半球、半个世纪等等、即半整数如此都是直觉认识,如果对半整数1/2或0.5提升理性认识,半整数1/2或0.5拥有半整性质或拥有相对整·性质,便会形成理性认识;广义·数学真理为
量子力学奠定坚实基础,量子力学的
半整数又为广义·整数、广义·数学真理提供客观上的
科学理论证据与支持,为什么·1+1=2并非空谈数学理论,而是拥有实实在在的应用价值,…。
27、推论:实无限、
实数系辩证数值逻辑公理系统依然是连锁形式的(辩证推理):
实无限、实数系辩证数值逻辑公理系统的内容与形式依然是自然连锁形式的,依然相互派生子集合,分数±1/2,±3/2,±5/2,±5/2,±7/2,±9/2,…依然从系统发展变化的过程中分化出来,充分地体现其分数·相对整·性质,或者说
小数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5,…依然会从系统发展变化的过程中产生分化出来,充分地十足地体现其小数·相对整·性质,为奇数(包括素数)±1,±3,±5,±7,±9,±11,…能被2相对·整除提供客观的
科学理论依据,蕴涵着完整的数学(算术)运算公理2,3,4,5,6,7,8,9,10,11,12,…的倍数关系,实无限、
实数系辩证数值逻辑公理系统如下(这当然是推论),{[0≤X1≥1]}1与{[0.5≤X2≥1.5]}2的基数均为实数、其他依次类推,符号↓依然是指相互派生子集合(推论仅以正的为代表):
{[0≤X1≥1]}1↓{[2≤X5≥3]}5↓{[(a-1)/2≤Xa≥(a+1)/2]}a,a=1,2,3,4,5,6,……,
{[0.5≤X2≥1.5]}2↓{[1.5≤X4≥2.5]}4↓{[(a-1)/2≤Xa≥(a+1)/2]}a
1∑{[0≤X1≥1]}1=∑{[0≤X1≥1]}1,2∑{[0≤X1≥1]1= ∑{[1/2≤X2≥3/2]}2,
3∑{[0≤X1≥1]}1=∑{[1≤X3≥2]}3,4∑{[0≤X1≥1]}1=∑{[3/2≤X4≥5/2]}4,
a∑{[0≤X1≥1]}1=∑{[(a-1)/2≤Xa≥(a+1)/2]}a,a=1,2,3,4,5,6,7,8,……;……。
三、结语:为什么·1+1=2、广义·整数、广义·数学真理并非空谈数学理论,而是拥有实实在在的应用价值;
费米子的
自旋规律分别遵循±1/2,±3/2,±5/2,±7/2,±9/2,±11/2,…、
玻色子的自旋规律分别遵循0,±1,±2,±3,±4,±5,…,因此事实证明引进广义整数0,±1/2,±1,±3/2,±2,±5/2,±3,±7/2,±4,±9/2,±5,±11/2,±6,±13/2, {[Z*(±1/2)],Z=0,1.2,3,4,5,6,7,8,9,10,……}或0,±0.5 ,±1 ,±1.5,± 2,±2.5,±3,±3.5,±4,±4.5,±5,±5.5,±6,±6.5,[(±0.5*Z),Z=0,1,2,3,4,5,6,7,8,……]是完全正确的,因为
量子力学是检验广义整数、广义数学真理的标准,…。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362