英格丽·多贝西(Ingrid Daubechies),1954年8月17日出生在
比利时林堡省的豪特哈伦-亥尔赫泰伦市,是一位物理学家和数学家。
国际数学联盟主席,她在图像压缩和
信号处理的小波变换的研究领域有着重要贡献,此外,她还是2023年
沃尔夫数学奖的得主。英格丽·多贝西对数学和科学的热爱是从小就培养起来的。父亲在她上学时培养了她对这些学科的好奇心和兴趣。作为一个孩子,她对事物如何构建、如何运作,以及机械背后的机制、数学概念背后的真相,都很着迷。当她无法入睡时,她甚至会在脑海中计算大数字,并认为数字迅速增长很吸引人。
个人经历
1975年毕业于布鲁塞尔自由大学物理专业。之后,在该校作助理研究员,1984年成为助教。并获得物理学博士学位。
1987年,英格丽·多贝西移居
美国,任职於AT\u0026T位於纽泽西的贝尔实验室。就在同一年,做出了她最为著名的发现:即如何建立紧支撑的离散正交小波。这个发现最终被用于图像压缩,包括JPEG 2000标准中的多贝西小波。
1993年以来,多贝西担任
普林斯顿大学的全职教授。
主要贡献
发展双正交小波
多贝西最重要的贡献是她在1988年提出了平滑的紧凑支持的正交小波基。这些基数彻底改变了
信号处理,为数字化、存储、压缩和分析如音频和视频信号、
计算机断层扫描和磁共振成像数据提供了高效的方法。这些小波的紧凑支持使其有可能在线性依赖信号长度的时间内将信号数字化。这对信号处理的研究人员和工程师来说是一个关键因素,他们能够迅速将信号分解为不同尺度的贡献的叠加。此外,她发展的双正交小波已成为JPEG 2000图像压缩和编码系统的基础。
由多贝西教授的工作所提出的小波理论已经成为信号和图像处理的许多领域的一个重要工具。例如,它已被用于增强和重建
哈勃空间望远镜早期的图像,用于检测伪造的文件和指纹。此外,小波是无线通信的一个重要组成部分,并被用来将声音序列压缩成MP3文件。
英格丽-多贝西因其在创建、发展小波理论和现代时频分析方面的工作而被授予
沃尔夫奖。她发现了平滑的、紧凑支持的小波,并发展了双正交小波,改变了图像和
信号处理和过滤。
倡导教育平等
除了她的科学贡献,多贝西教授还倡导科学和数学教育的平等机会,特别是在发展中国家。作为
国际数学联盟的主席,她努力推动这一事业。她意识到女性在这些领域面临的障碍,并努力指导年轻的女科学家,增加她们的代表性和机会。
主要论文
1.D.Aerts and I.Daubechies, About the structure-preserving maps of a quantum mechanical propositional system, Helv.Phys. Acta,51,pp.637-660,1978.
2.D.Aerts and I.Daubechies, Physical justification for using the tensor product to describe two quantum systems as one joint system,Helv.Phys. Acta, 51,pp.661-675,1978.
3.I.Daubechies, An application of hyperdifferential operators to holomorphic quantization, Lett.
数学Phys.,2 (6),pp.459-469,1978.
4.D.Aerts and I.Daubechies, A mathematical condition for a sublattice of a propositional system to represent a physical subsystem,with a physical interpretation, Lett.
数学 Phys.,3 (1), pp.19-27, 1979.
5.D.Aerts and I.Daubechies, A connection between propositional systems in Hilbert
Space乐队s and von Neumann algebras,Helv.Phys.Acta,52, pp.184-199, 1979.
6.D.Aerts and I.Daubechies, A characterization of subsystems in physics, Lett.
数学 Phys.,3 (1), pp.11-17,1979.
7.I.Daubechies and A. Grossmann, An integral transform related to quantization, J. Math. Phys.,21 (8),pp.2080-2090,1980.
8.I.Daubechies,"Representation of quantum mechanical operators by kernels on Hilbert spaces of analytic functions," Ph.D. Thesis, Free University Brussels (VUB),1980.
9.I. Daubechies, "Weylkwantisatie bestudeerd langs de koherente toestanden om," Contest for Traveling Fellowships of he Belgian Government,1980, (in Dutch).1980.
10.I.Daubechies,Coherent states and projective representation of the linear canonical transformations, J.
数学 Phys.,21 (6),pp.1377-1389,1980.
11.I.Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization Comm. Math. Phys., 75 (3), pp. 229-238, 1980.
12.I.Daubechies and
金钟炫 Klauder, Constructing measures for path integrals, J.
数学 Phys., 23 (10), pp. 1806-1822, 1982.
13.J.R. Klauder and I. Daubechies, Measures for path integrals, Phys. Rev. Lett., 48, pp. 117-120, 1982.
14.
J.RKlauder and I. Daubechies, Wiener measures for quantum mechanical path integrals, in Stochastic Processes in Quantum Theory and Statistical Physics 173, S. Albeverio, Ph. Combe, and M. Sirugue-Collin (Eds.), pp. 244-247, Springer Berlin / Heidelberg, 1982.
15.D.Aerts and I. Daubechies, A simple proof that the logical structure preserving map between quantum mechanical proposition systems conserves the angles, Helv. Phys. Acta, 56, pp. 1187-1190, 1983.
16.I.Daubechies and
金钟炫 Klauder, Measures for more quadratic path integrals, Lett.
数学 Phys., 7 (3), pp. 229-234, 1983.
17.I.Daubechies and E. Lieb, One-electron relativistic molecules with Coulomb interaction, Comm. Math. Phys., 90 (4), pp. 497-510, 1983. Also as part of book entitled The Stability of Matter: From Atoms to Stars, Selecta of Elliott H. Lieb Part V, W. Thirring (Ed.), Springer Berlin Heidelberg, 2005.
18.I.Daubechies, An Uncertainty Principle for Fermions with Generalized Kinetic
能量,Comm.
数学 Phys., 90 (4), pp. 511-520, 1983.
19.I. Daubechies, Continuity statements and counterintuitive examples in connection with Weyl quantization, J. Math. Phys., 24 (6), pp. 1453-1461, 1983.
20.I. Daubechies, A. Grossmann, and J. Reignier, An integral transform related to quantization II: Some mathematical properties, J.
数学 Phys., 24 (2), pp. 239-243, 1983.
21.I. Daubechies and E. Lieb, Relativistic molecules with Coulomb interaction, pp. 143-148 in Proceedings of the 1983 UAB Conference on Differential Equations, eds. I. Knowles and R. Lewis, North-Holland, 1984.
22.I. Daubechies, "Weylkwantisatie bestudeerd via een integraaltransformatie met behulp
Van het koherentetoestanden-formalisme," Paper awarded the 1984 Louis Empain Prize (Belgium) for Physics, 1984, (in Dutch).1984.
23.I. Daubechies, One electron molecules with relativistic kinetic
能量: Properties of the discrete spectrum, Comm.
数学 Phys., 94 (4) , pp. 523-535, 1984.
24.
J.R Klauder and I. Daubechies, Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians, Phys. Rev. Lett., 52, pp. 1161-1164, 1984.
25.I. Daubechies and
金钟炫 Klauder, Quantum-mechanical path integrals with Wiener measure for all
多项式 Hamiltonians. II, J.
数学 Phys., 26 (9), pp. 2239-2256, 1985.
26.I. Daubechies and J.R. Klauder, True measures for real
时间 path integrals, pp. 425-432 in Path Integrals from meV to MeV, eds. S. Albeverio, C. Inomata,
金钟炫 Klauder, and L. Streit, World Scientific, 1986.
27.I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J.
数学 Phys., 27 (5), pp. 1271-1283, 1986.
28.I. Daubechies and T. Paul, Wavelets - some applications, pp. 675-686 in Proceedings of the International Conference on Mathematical Physics, eds. M. Mebkhout and R. Seneor, World Scientific, Marseille, France, 1987.
29.I. Daubechies, Discrete sets of coherent states and their use in signal analysis in Differential Equations and Mathematical Physics 1285, I.W. Knowles and Y. Saito (
电子数据系统), pp. 73-82, Springer Berlin / Heidelberg, 1987.
30.I. Daubechies,
金钟炫 Klauder, and T. Paul, Wiener measures for path integrals with affine kinematic variables, J.
数学 Phys., 28 (1), pp. 85-102, 1987.
31.I. Daubechies and A. Grossmann, Frames in the Bargmann space of entire functions, Comm. Pure \u0026 Appl. Math., 41 (2), pp. 151-164, 1988.
32.I. Daubechies and T. Paul,
时间频率 localization operators-a geometric phase space approach II. The use of dilations, Inverse Problems, 4 (3), pp. 661-680, 1988.
33.I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inf. Theory, 34 (4), pp. 605-612, 1988.
34.I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure \u0026 Appl.
数学, 41 (7), pp. 909-996, 1988.
35.I. Daubechies, Orthonormal bases of wavelets with finite support - connection with discrete filters," Proceedings of the 1987 International Workshop on Wavelets and Applications, Marseille, France, eds.
Jackie McLean Combes, A. Grossmann, and Ph. Tchamitchian, Springer, Berlin, 1989.
36.I. Daubechies, The wavelet transform,
时间频率 localization and signal analysis IEEE Trans. Inf. Theory, 36 (5), pp. 961-1005, 1990.
37.I. Daubechies and J.C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J.
数学 Anal., 22 (5), pp. 1388-1410, 1991.
38.I. Daubechies, Phase space path integrals, coherent states and Wiener measure, Proceedings of the 1987-1988 Workshop on Path Integrals,
Colombia University (
蒙特利尔) and Sherbrooke University, Canada, Suppl. Rendiconti Circ. Mat. di Palermo II, 25, pp. 157-176, 1991.
39.I. Daubechies, The wavelet transform: a method for
时间频率 localization, chapter 8 (pp. 366-417) in the book Advances in Spectrum Analysis and Array Processing, Vol. 1, ed. S. Haykin, Prentice-Hall, 1991.
40.I. Daubechies, S. Jaffard, and J.L. Journe, A simple Wilson orthonormal basis with exponential decay, SIAM J.
数学 Anal., 22 (2), pp. 554-572, 1991.
社会职务
人才培养
教授课程
个人生活
1987年,英格丽·多贝西与前AT\u0026T实验室的负责互联网及网络系统的副总裁罗伯特·考尔德班克结婚。
获得荣誉
2018年12月16日,英格丽·多贝西获得第三届“
复旦-中植科学奖”。
人物评价
英格丽-多贝西教授对小波理论领域做出了重大贡献。她的研究彻底改变了图像和信号的数字处理方式,为数据压缩提供了标准和灵活的算法。这导致了包括医学成像、无线通信,甚至是数字电影等多种技术的广泛创新。
多贝西在开发
谐波分析的实际应用方面也做出了无与伦比的贡献,从而将复杂的图像处理技术引入到从艺术到进化生物学等领域。