燃料电池汽车(
fcv)是一种主要以氢为燃料,利用车载燃料电池装置产生的电力作为续航动力,辅以传统电池作为瞬间大功率发电的新型动力汽车。燃料电池汽车的结构与纯电动汽车和
混合动力汽车的结构大致相似,也有纯电和混动之分,不同点在于汽车的电池,目前常见的燃料电池汽车主要以氢气为燃料。
相比燃油、
锂电池车,
氢燃料电池车具有更长的续航里程、更快的充能速度、更强的低温性能等优势。近年来,政府、产业、行业、企业及相关专业机构等多方进行了积极的推动和努力,我国
氢能产业和燃料电池汽车的发展正驶上“快车道”。
fcv的关键能源动力技术包括电池技术、电机技术、控制器技术。电池技术、电机技术和控制器技术是电动汽车所特有的技术,这3项技术也是一直制约电动汽车大规模进入市场的关键因素。
汽车简介
燃料电池汽车( FCV) 是一种用车载燃料电池装置产生的电力作为动力的汽车。车载燃料电池装置所使用的燃料为高纯度
氢气或含氢燃料经重整所得到的高含氢重整气。与通常的电动汽车比较,其动力方面的不同在于FCV 用的电力来自车载燃料电池装置,电动汽车所用的电力来自由电网充电的
蓄电池。因此,
fcv 的关键是燃料电池。
底盘布置
燃料电池
动力总成包括:
氢气罐总成、
蓄电池总成、燃料电池堆总成、动力输出系统总成等。其中,储氢罐一般放置于底盘的中部,或后排座椅的下方空间(传统
内燃机轿车的油箱位置) ,将氢气罐分散存储。除了燃料电池动力总成外,对汽车制动总成、前后悬架总成及轮胎等方面也应作相应的调整和测试。特别是随着
轮毂电机技术的发展,使燃料电池汽车在电动机的放置有了新的选择,增大了汽车内部空间。而各电动轮的驱动力也可直接控制,提高恶劣路面条件下汽车的行使性能。底盘布置应把绝大多数的负载均匀分配在底盘的前后端,降低车辆的总体重心,使轿车具有良好的操控性能,并改善车辆的整体安全性。
管理系统
燃料电池汽车的
动力系统一般由
质子交换膜燃料电池、
蓄电池、电机和系统控制设备组成。燃料电池所生成的
电能经过DC /DC
反激式变压器、DC /AC
逆变器等的变换,带动电机的运转,将电能转变为
机械能, 为汽车提供动力。在一些关键部件,如质子交换膜燃料电池和蓄电池等, 其热特性及
传热性质与传统汽车有着很大的不同,为燃料电池汽车的水、热管理提出了新的目标和要求。
电子控制
与传统汽车相同,电子控制在燃料电池汽车的发展中也将起着越来越重要的作用。汽车的各种操纵系统都会向着电子化和电动化的方向发展,实现“线操控”,即用
导线代替
机械传动机构,如“导线制动”“导线转向”等; 现有的12V 动力电源已满足不了汽车上所有电气系统的需要, 42V汽车电气系统新标准的实施, 将会使汽车电器零部件的设计和结构发生重大的变革, 机械式继电器、熔丝式保护电路也将随之淘汰。同时, 燃料电池的特性有其自身的特点:1、电压低, 电流大;2、输出电流会随温度的升高而升高, 输出电压会随输出电流的增大而下降;3、从开始输出电压、电流到逐渐进入稳定状态, 停留在过渡带范围内的动态反应时间较长。正是由于以上特点, 大多数电器和电机难以适应其电压特性,所以必须和DC /DC
变换器和DC /AC
逆变器配合使用,需要对燃料电池系统进行大量的功率调节以保证电压的稳定。
燃料电池的输出功率大于汽车的需要时,多余的功率可对
蓄电池进行充电, 在
动力系统起动时蓄电池可以给辅助系统提供电源;燃料电池的功率不能满足汽车加速、爬坡时,蓄电池可提供附加功率,配合燃料电池共同使用。所以,车辆可采用42V 的辅助电源独立地为各种
电子、电气设备提供
电能。由于燃料电池汽车较之传统
内燃机汽车在驱动方式上有着本质的区别,所以在底盘布置、水热管理、电子控制等诸多方面的设计也有着很大的不同。
工作原理
燃料电池电动汽车在本质上是一种零排放汽车,发电的基本原理是: 电池的
阳极( 燃料极) 输入( 燃料) , 氢分子( H2) 在阳极
催化剂作用下被离解成为
氢离子( H+ ) 和电子( e-) ,H+ 穿过燃料电池的
电解质层向
阴极( 氧化极) 方向运动, e-因通不过电解质层而由一个外部电路流向阴极,在电池阴极输入( O2),
氧气在阴极催化剂作用下
离解成为氧原子( O) , 与通过外部电路流向阴极的e-和燃料穿过电解质的H+ 结合生成稳定结构的水( H2O) , 完成电化学反应放出热量。这种电化学反应与
氢气在氧气中发生的剧烈燃烧反应是完全不同的, 只要
阳极不断输入氢气, 阴极不断输入氧气, 电化学反应就会连续不断地进行下去, e-就会不断通过外部电路流动形成电流, 从而连续不断地向汽车提供电力。与传统的导电体切割磁力线的回转机械发电原理也完全不同, 这种电化学反应属于一种没有物体运动就获得电力的静态发电方式。因而,燃料电池具有效率高、噪音低、无污染物排出等优点,这确保了
fcv 成为真正意义上的高效、清洁汽车。
为满足汽车的使用要求, 车用燃料电池还必须具有高比能量、低工作温度、起动快、无泄漏等特性,在众多类型的燃料电池中,
质子交换膜燃料电池( PEMFC) 完全具备这些特性, 所以FCV 所使用的燃料电池都是PEMFC。
燃料电池的能量转换效率极高。燃料电池没有
活塞或涡轮等机械部件及中间环节,不经历
热机过程,不受热力循环(
卡诺循环)限制,故能量转换效率高,燃料电池的
化学能转换效率在理论上可达100%,实际效率已达60%~80%,是普通
内燃机热效率的2~3倍(汽油机和柴油机汽车整车效率分别为16%-18%和22%~24%)。因此,从节约能源的角度来看,燃料电池汽车明显优于使用内燃机的普通汽车。
优缺点
与传统汽车相比,燃料电池汽车与传统的内燃机驱动汽车在构造及动力传输等方面的不同, 为汽车的整体设计提出了新的要求。传统内燃机汽车的
发动机变速器动力总成在燃料电池汽车中不复存在,取而代之的是燃料电池反应堆、
蓄电池、
氢气罐、电动机、DC /DC 转化器等设备。而
汽车制动系统和悬架也相应变化。因此, 根据燃料电池汽车自身特点,在设计时,应作相应的变化和改进。
优点
1、零排放或近似零排放;2、减少了机油泄漏带来的水污染;3、降低了
温室气体的排放;4、提高了燃油经济性;5、提高了发动机燃烧效率;6、运行平稳、无噪声。
缺点
1.成本:特别是初期建制成本,还是高于
发电机,所以难以推广,虽然随着技术的进步,成本也在下降,但还有一段路要走;2.技术门槛高:对于制造者、销售者、消费者都需要有一定的技术或训练,目前还不易达到;3.基础设施的配合:重点就是燃料的提供,不管是用天然气或石油气进行改质,或直接使用氢,都需要有配合的基础设施,又是一笔很大的支出。
发展方向
中原地区高度重视
氢能燃料电池产业。近两年,国家相关部委密集出台的《能源技术革命创新行动计划(2016~2030年)》《国家创新驱动发展战略纲要》《“十三五”国家科技创新规划》等,纷纷将发展氢能和燃料电池技术列为重点任务,将燃料电池汽车列为重点支持领域。
2016年3月,
中华人民共和国国家发展和改革委员会和
国家能源局发布了《能源技术革命创新行动计划(2016-2030年)》,将“氢能与燃料电池技术创新”列为15项重点任务之一。在同时发布的《能源技术革命重点创新行动路线图》中,提出了氢能与燃料电池技术创新的战略方向,2020年、2030年和2050年的创新目标及在大规模制氢技术、分布式制氢技术、
氢气储运技术、氢气/空气聚合物
电解质膜燃料电池(PEMFC)技术、
甲醇/空气聚合物电解质膜燃料电池(MFC)技术、燃料电池分布式发电技术等方面的创新行动。
2016年5月20日,中共中央、国务院印发《国家创新驱动发展战略纲要》,指出:“发展引领产业变革的颠覆性技术,不断催生新产业、创造新就业。高度关注可能引起现有投资、人才、技术、产业、规则‘归零’的颠覆性技术,前瞻布局新兴产业前沿技术研发,力争实现‘弯道
超车’。”其中包括“开发
氢能、燃料电池等新一代能源技术”。
2016年8月18日,国务院印发《“十三五”国家科技创新规划》,在发展现代交通技术与装备中,提出要突破燃料电池
动力系统技术;在发展引领产业变革的颠覆性技术中,提出要“开发氢能、燃料电池技术等新一代能源技术”。
氢燃料电池汽车具有零排放、续驶里程长、燃料加注快等典型特点,是未来汽车技术发展的重要趋势之一。同时,发展燃料电池汽车对改善能源结构、发展低碳交通具有非常显著的意义。
2016年11月19日,国务院印发《“十三五”国家战略性新兴产业发展规划》,明确提出:“系统推进燃料电池汽车研发与产业化”。具体提出,“加强燃料电池基础材料与过程机理研究,推动高性能低成本燃料电池材料和系统关键部件研发。加快提升燃料电池堆系统可靠性和工程化水平,完善相关技术标准。推动车载储氢系统以及氢制备、储运和加注技术发展,推进
加氢站建设。到2020年,实现燃料电池汽车批量生产和规模化示范应用。”
2017年4月,工信部和发改委发布的《汽车产业中长期发展规划》提出,布局包括燃料电池
动力系统在内的
新能源汽车创新链,加强
新能源汽车技术专业研发及产业化,逐步扩大燃料电池汽车试点示范范围。
2017年5月,科技部和交通运输部发布的《“十三五”交通领域科技创新专项规划》提出“发展燃料电池汽车核心专项技术”。具体要求,深入开展电堆关键材料和部件的创新研究及产业化研发,大幅提高燃料电池电堆产品性能、寿命,
降低成本。加大燃料电池
发动机辅助系统研发力度,重点突破
空气压缩机、氢循环泵等关键部件及其系统集成技术。优化升级燃料电池
动力系统技术,重点突破高功率密度乘用车燃料电池发动机和长寿命商用车燃料电池发动机技术、燃料电池/
动力电池混合动力集成控制与能量优化管理技术。实现燃料电池整车批量化生产,初步实现商业化。
2016年,在国家制造强国建设
战略咨询公司委员会和工信部支持下,
中国汽车工程学会组织来自企业、高校、科研机构、行业组织等方面的500余位专家、学者,历时逾一年,编制了《节能与新能源汽车技术路线图》,其中
氢燃料电池汽车技术路线图为其七大领域之一。该路线图提出,中国
氢能燃料电池汽车发展的愿景是:到2030年,实现百万辆氢能燃料电池汽车上路行驶目标;到2050年,与纯电技术一起,实现汽车零排放目标。
关键技术
fcv的关键能源动力技术包括电池技术、电机技术、控制器技术。电池技术、电机技术和控制器技术是电动汽车所特有的技术,这3项技术也是一直制约电动汽车大规模进入市场的关键因素。
电池技术
电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E) 、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。
fcv用电池经过了3代的发展,已经取得了突破性进展。第1代是
铅酸电池,目前主要是阀控铅酸电池(VRLA) ,由于其比能量较高、价格低和能高倍率放电,因此是目前惟一能大批量生产的电动汽车用电池。第2代是
碱性电池,主要有镉、
镍氢、钠硫、锂离子和锂聚合物等多种电池,其比能量和比功率都比铅酸电池高,因此大大提高了电动汽车的动力性能和续驶里程,但其价格却比铅酸电池高。第3代是以燃料电池为主的电池,燃料电池直接将燃料的
化学能转变为
电能,能量转变效率高,比能量和比功率都高,并且可以控制反应过程,能量转化过程可以连续进行,因此是理想的汽车用电池还处于研制阶段,一些关键技术还有待突破。广泛应用于
fcv的燃料电池是一种称为
质子交换膜的燃料电池(PEMFC) ,它以纯氢为燃料,以空气为
氧化剂,不经历
热机过程,不受热力循环限制,因此能量的转换效率高,是普通
内燃机热效率的2~3倍。同时,它还具有噪音低、无污染、寿命长、启动迅速、比功率大和输出功率可随时调整等特性,使得PEMFC非常适合用作交通工具的动力源。
电机技术
电动汽车驱动电机是所有电动汽车必不可少的关键部件。使用较多的有直流有刷、永磁无刷、交流感应和开关
磁阻4种电机。直流
有刷电机结构简单,技术成熟,具有
交流电机所不可比拟的优良电磁转矩控制特性,所以直到20世纪80年代中期,仍是国内外
fcv用电机的主要研发对象。但是,由于
直流电机价格高,体积和质量大,因此在电动汽车上的应用受到了限制。永磁无刷电机可以分为由
方波驱动的无刷直流电机系统(BLD— CM)和由
正弦信号驱动的无刷直流电机系统(PMSM) ,它们都具有较高的功率密度,其控制方式与感应电机基本相同,其主要优点是效率可以比交流感应电机高6个百分点,因此在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点。这类电机具有较高的能量密度和效率,其体积小、
惯性低、响应快,非常适应于
fcv的驱动系统,有极好的应用前景。但价格较贵,永磁材料一般仅耐热12c=0I以下。目前,由
日本研制的电动汽车主要采用这种电机。交流感应电机也是较早用于电动汽车驱动的一种电机,它的调速
数字技术比较成熟,具有结构简单、体积小、质量小、成本低、运行可靠、转矩脉动小、噪声低、转速极限高和不用位置传感器等优点,但因转速控制范围小、转矩特性不理想,因此不适合频繁启动、频繁加减速的电动汽车。
美国以及
欧洲研制的
fcv多采用这种电机。开关磁阻电机(SRM)具有简单可靠、可在较宽转速和转矩范围内高效运行,控制灵活、4
象限角运行、响应速度快和成本较低等优点。但实际应用发现,SRM存在着转矩波动大、噪声大、需要位置检测器等缺点,所以应用受到了限制。 4种电机各有优缺点,但是对于电动汽车而言,由于
电能是由各类电池提供的,价格昂贵而弥足珍贵,所以使用相对效率最高的永磁无刷电机是较为合理的,它已被广泛应用于功率小于100kW 的现代电动汽车上。在国外已有越来越多的
fcv采用性能先进的电动轮(又称
轮毂电机),它用电机(多为永磁无刷式)直接驱动车轮,因此无传统汽车的
变速器、
传动轴、
驱动桥等复杂的
机械传动部件,汽车结构大大简化。但是它要求电机在低转速下有很大的扭矩,特别是对于军用
越野车,要求电机
基点转速:最高转速=1:10。近几年,美、英、法、德等国纷纷将电动轮技术应用于军用越野车和轻型坦克上,并取得了重大成果。
控制器技术
控制器技术的变速和方向变换是靠电动机调速控制装置来完成的,其原理是通过控制电动机的电压和电流来实现电动机的驱动转矩和旋转方向的控制。目前
fcv上应用较广泛的是
可控硅斩波调速,通过均匀改变电机的端电压,控制电机的电流,来实现电机的无级调速。在
电子电力技术的不断发展中,它也逐渐被其他电力
晶体管(如GTO、MOSFET、BTR及IGBT 等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用将成为必然的趋势。在驱动电机的旋向变换控制中,
直流电机依靠
接触器改变
电枢或
磁场的电流方向,实现电机的旋向变换,这使得控制电路复杂、可靠性降低。当采用交流异步电机驱动时,电机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用
交流电机及其变频调速
数字技术,使
fcv的制动能量回收控制更加方便,控制电路更加简单。二十一世纪以来,由
感应电动机驱动的电动汽车几乎都采用
矢量控制和
直接转矩控制。矢量控制又有最大效率控制和
无速度传感器矢量控制,前者是使
励磁电流随着电动机参数和负载条件的变化,从而使电动机的损耗最小、效率最大;后者是利用电机电压、电流和电机参数来估算出速度,不用速度
传感器,从而达到简化系统、
降低成本、提高可靠性的目的。直接转矩控制克服了矢量控制中解耦的问题,把
定子和转子磁通量定向变换为定子磁通定向,通过控制定子
磁链的幅值以及该矢量相对于转子磁链的夹角,从而达到控制转矩的目的。由于直接转矩的控制手段直接、结构简单、控制性能优良和动态响应迅速,因此非常适合
fcv的控制。随着电机及驱动系统的发展,控制系统趋于智能化和数字化。
变结构控制、
模糊控制、神经网络、自适应控制、专家系统、
遗传算法等非线性
智能控制技术,都将各自或结合应用于电动汽车的电机控制系统。它们的应用将使系统结构简单,响应迅速,抗干扰能力强,参数变化具有鲁棒性,可大大提高整个系统的综合性能。
研究现状
随着环境问题和能源问题的日益突出,
新能源汽车成为了世界各大汽车厂商及研发机构的研究热点,而在其中,燃料电池汽车(
燃料cell vehicle,
fcv) 以其高效率和近零排放被普遍认为具有广阔的发展前景。
美国、
欧盟、
日本和
韩国都投入了大量资金和人力进行燃料电池车辆的研究,通用、福特、
克莱斯勒汽车公司、
丰田汽车、
本田技研工业、
奔驰等大公司都已经开发出燃料电池车型并已经在公路上运行,普遍状况良好。近年来,我国在燃料电池方面的投入也不断加大,北京奥运会、
上海市世博会期间都有燃料电池轿车和大客车进行了示范运行。燃料电池汽车将在
新能源汽车中占据重要地位已经是不争的事实。
北美
美国和
加拿大是燃料电池研发和示范的主要区域,在美国能源部(DOE)、交通部(DOT)和环保局(
美国国家环境保护局)等政府部门的支持下,燃料电池技术取得了很大的进步,
通用汽车、
福特汽车公司、
丰田汽车、
梅赛德斯-奔驰集团、
日产汽车公司、现代等整车企业均在美国加州参加燃料电池汽车的技术示范运行,并培育了美国的UTC(
联合技术公司)、加拿大的巴拉德(Ballad)等国际知名的燃料电池研发和
制造企业美国通用汽车公司2007 年秋季启动的Project Driveway 计划,将100 辆
雪佛兰Equinox 燃料电池汽车投放到消费者手中,2009 年总行驶里程达到了160万km。同年,通用汽车宣布开发全新的一代
氢燃料电池系统,新系统与雪佛兰Equinox 燃料电池车上的燃料电池系统相比,新一代氢燃料电池体积缩小了一半,质量减轻了100 kg,铂金用量仅为原来的1/3。
通用汽车新一代燃料电池汽车的铂金用量已经下降到30 g,按照目前国际市场价格,铂金为300~400 元/g,100 kW燃料电池的铂金成本约为1 万元人民币,燃料电池的成本大幅度下降。预计到2017 年,100 kW燃料电池
发动机的铂金用量将下降到10~15 g,达到传统汽油机三效催化器的铂金用量水平。
美国在2006 年专门启动了国家燃料电池公共汽车计划(National
燃料 Cell City Bus Program,NFCBP),进行了广泛的车辆研发和示范工作,2011 年
美国燃料电池混合动力公共汽车实际道路示范运行单车寿命超过1.1 万h 。美国在燃料电池混合动力
叉车方面也进行了大规模示范,截至2011 年,全美大约有3000 台燃料电池叉车,寿命达到了1.25 万h 的水平。燃料电池
地牛在室内空间使用,具有噪音低、零排放的优点。
欧洲的燃料电池客车示范计划,完成了第6 框架计划(Framework Program,2002—2006)和第7 框架计划(2007—2012),目的是突破燃料电池和氢能发展的一些关键性技术难点,在CUTE (Clean Urban Transport for Europe, 欧洲清洁都市交通)及欧盟其他相关项目支持下,各个城市开展燃料电池公共汽车示范运行,今年新的计划 CHIC( Clean
氢 in European Cities,
欧洲清洁都市交通)开始实施,包括阿姆斯特丹、
巴塞罗那、
汉堡市、伦敦、
卢森堡、
马德里、
波尔图、
斯德哥尔摩、
斯图加特、冰岛以及
澳大利亚珀斯,即澳大利亚STEP 项目(Sustainable Transport
能量 Program,可持续交通能源计划)等,欧洲在燃料电池汽车的可靠性和成本控制等方面取得了长足的进步。
在
德国,2012 年6 月,主要的汽车和能源公司与政府一起承诺,建立广泛的全国氢燃料加注网络,支持发展激励计划,即到2015 年,全国建成50 个
加氢站,为全国5000 辆燃料电池汽车提供加氢服务 。
梅赛德斯-奔驰集团于2011 年开展燃料电池汽车的全球巡回展示,验证了燃料电池轿车性能已经达到了传统轿车的性能,具备了产业化推广的能力。戴姆勒集团参与“ Hy FLEET:CUTE(2003-2009)”项目。36 辆
奔驰Citaro 燃料电池客车已由20 个交通运营商进行运营使用,运营时间超过14 万h、行驶里程超过220 万km。但是第一代纯燃料电池的客车,寿命只有2 000 h,经济性较差。
梅赛德斯-奔驰集团与2009 年开始推出第二代轮边电机驱动的燃料电池客车,主要性能达到了国际先进水平,其经济性大幅度改善,燃料电池耐久性达到1. 2 万h。
德国西门子股份公司研发的燃料电池,已经成功地应用于德国的214 型潜艇上(氢氧型) 。2007 年德国戴姆勒奔驰公司,
美国福特汽车公司和
加拿大Ballard公司合作,成立AFCC 公司(Automotive Fuel Cell Cooperation,车用燃料电池公司),以研发和推广车用燃料电池。2013 年年初,
宝马公司决定与燃料电池技术排名第一的企业——
丰田汽车公司合作,由丰田公司向宝马公司提供燃料电池技术。
日韩
从全球范围看,
日本和
韩国的燃料电池研发水平处于全球领先,尤其是丰田、
日产汽车公司和
现代汽车,在燃料电池汽车的耐久性,寿命和成本方面逐步超越了美国和
欧洲。丰田公司的2008 版FCHV-Adv 在实际测试中,实现了在-37 ℃顺利启动,一次加氢行驶里程达到了830km,单位里程耗氢量0.7 kg/(100 km),相当于汽油3L/(100 km),如图3 所示 。2013 年11 月,
丰田汽车在“第43 届
东京车展2013”上,展出了计划在2015 年投放市场的燃料电池
概念车,作为技术核心的燃料电池组目前实现了当时公开的全球最高的3 kW/L 功率密度。该燃料电池组去掉了加湿模块,不但降低了成本、车质量和体积,还减少了燃料电池的热容量,有利于燃料电池在低温条件下迅速
冷启动。如图5所示为丰田公司的FCHV-Adv。
目前丰田汽车公司在扩大
混合动力汽车的同时,重点针对燃料电池汽车的产业化进行准备,拟在2015年投放新一代燃料电池轿车,进行批量生产;2016 年生产(与日野合作)新一代燃料电池客车。和
丰田汽车公司类似,
日产汽车公司汽车也投入巨资开展燃料电池电堆和轿车的研发,2011 年日产的燃料电池电堆,功率90 kW,质量仅43 kg,2012 年,日产汽车公司研发的电堆功率密度达到了2.5 kW/L,这在当时是国际最高水平 。另外,
本田技研工业公司新开发的FCX Clarity燃料电池汽车,能够在- 30℃顺利启动,续驶里程达到620 km ,2014 年,本田宣布的新一代燃料电池堆功率密度也达到3 kW/L。
现代汽车从2002 开始研发燃料电池汽车,2005 年采用巴拉德的电堆组装了32 辆运动型多功能车(sports utility vehicle,SUV),2006 年推出了自主研发的第一代电堆,组装了30 台SUV,4 辆大客车,并进行了示范运行;2009—2012 年间,开发了第2 代电堆,装配100 台SUV,开始在国内进行示范和测试,并对电堆性能进行改进;2012 年,推出了第3 代燃料电池SUV 和客车,开始全球示范;2013 年,
现代汽车宣布将提前2年开展千辆级别的燃料电池SUV(
现代ix35)生产,在全球率先进入燃料电池千辆级别的小规模生产阶段。该SUV 采用了100 kW燃料电池,24 kW
锂离子电池,100 kW电机,70 MPa 的氢瓶可以储存5.6 kg
氢气,新
欧洲行驶循环(New European Drive Cycle,NEDC) 循环工况续驶里程588 km,最高车速160 km/h。
中国
在中国国家“八六三”高技术项目、“十五规划”的
fcv重大科技专项与“十一五规划”节能与
新能源汽车重大项目的支持下,通过产学研联合研发团队的刻苦攻关,中国的燃料电池汽车技术研发取得重大进展,初步掌握了整车、
动力系统与核心部件的核心技术,基本建立了具有自主
知识产权的燃料电池轿车与燃料电池城市客车动力系统技术平台,也初步形成了燃料电池
发动机、
动力电池、DC/DC
变换器、驱动电机、供氢系统等关键零部件的配套研发体系,实现了百辆级动力系统与整车的生产能力。中国燃料电池汽车正处于商业化示范运行考核与应用的阶段,已在北京奥运燃料电池汽车规模示范、上海世博燃料电池汽车规模示范、UNDP(United Nations Development Programme,
联合国开发计划)燃料电池城市客车示范以及“十城千辆”、
2010年广州亚运会、
深圳第26届世界大学生夏季运动会等示范应用中取得了良好的社会效益中国燃料电池轿车采用独具特色的“电—电混合”
动力系统平台技术方案,具有“动力系统平台整车适配、电—电混合能源动力控制、车载高压储氢系统、工业副产
氢气纯化利用”的技术特征。在“十五规划”研发的基础上,“十一五规划”新一代燃料电池轿车动力系统结合整车平台的改变,采用扁平化的动力系统布置方式,燃料电池
发动机氢气子系统、空气子系统与冷却系统采用模块化分散布置的模式,增加了动力系统与整车适配的柔性,明显提升整车的人机工程性能。同时,优化集成DC/DC
变换器、DC/AC控制器以及
驻车空调和低压变换器等功率元器件的
动力系统控制单元,在提升模块化的同时方便集中处理电磁兼容、系统冷却以及电安全等问题,体现了电动汽车动力系统集成设计的方向。与“十五规划”燃料电池轿车动力系统相比,新一代动力系统的性能得到进一步优化与提高。主要表现在:燃料电池发动机功率从40 kW 提高到55 kW;动力
蓄电池容量从48 kWh 减小到26 kWh ;电机功率从60 kW 提高到90 kW;
电机控制器(DC/AC) 功率提高35%,体积比功率增加12.5%。同时,
动力系统继续保持燃料经济性的技术优势,在车辆整备质量增加近250 公斤的前提下整车动力性明显提高,燃料经济性则仍然保持在1.2 kg/(100 km) 的原有水平。中国国家“八六三”高技术项目持续支持燃料电池汽车的技术研发工作,“十二五规划”期间为保持中国电动汽车技术制高点,继续保持了对燃料电池汽车的支持力度。从产业界来看,即使在“十五、十一五规划”燃料电池汽车全球产业化热潮期间,中国汽车工业界并没有在燃料电池汽车方面有明显投入,进入“十二五规划”后,在燃料电池汽车产业化趋于理性化的大背景下,
上汽集团制定了燃料电池汽车发展的五年规划,以
新源动力股份有限公司为燃料电池电堆供应商,开始投入大量资金研发燃料电池汽车,目前正进行第3 代燃料电池轿车
fcv 的开发,在2011 年必比登比赛中,上汽开发的FCV 在燃料电池轿车组别中,名列第3。