串行通信
计算机通信方式之一
串行通信是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。其只需要少数几条线就可以在系统间交换信息,特别使用于计算机与计算机、计算机与外设之间的远距离通信。串行通信作为计算机通信方式之一,主要起到主机与外设以及主机之间的数据传输作用,串行通信具有传输线少、成本低的特点,主要适用于近距离的人-机交换、实时监控等系统通信工作当中,借助于现有的电话网也能实现远距离传输,因此串行通信接口是计算机系统当中的常用接口。
技术简介
串行通信技术,是指通信双方按位进行,遵守时序的一种通信方式。串行通信中,将数据按位依次传输,每位数据占据固定的时间长度,即可使用少数几条通信线路就可以完成系统间交换信息,特别适用于计算机与计算机、计算机与外设之间的远距离通信。串行通信多用于系统间通信(多主控制系统)、设备间(主控设备与附属设备)、器件间(主控CPU与功能芯片)之间数据的串行传送,实现数据的传输与共享。
串行总线通信过程的显著特点是:通信线路少,布线简便易行,施工方便,结构灵活,系统间协商协议,自由度及灵活度较高,因此在电子电路设计、信息传递等诸多方面的应用越来越多。
串行通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。其只需要少数几条线就可以在系统间交换信息,特别适用于计算机与计算机、计算机与外设之间的远距离通信。
基本概念
随着计算机网络化和微机分级分布式应用系统的发展,通信的功能越来越重要。通信是指计算机与外界的信息传输,既包括计算机与计算机之间的传输,也包括计算机与外部设备,如终端、打印机和磁盘等设备之间的传输。在通信领域内,数据通信中按每次传送的数据位数,通信方式可分为:并行通信和串行通信。
串行通讯接口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
同步通信
同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。这里的同步串行通信异步通信中的字符帧不同,通常含有若干个数据字符。
它们均由同步字符、数据字符和校验字符(CRC)组成。其中同步字符位于帧开头,用于确认数据字符的开始。数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。
异步通信
异步通信中,在异步通信中有两个比较重要的指标:字符帧格式和波特率。数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。
接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。
主要特点
一、串行通信的特点
数据在单条一位宽的传输线上,一比特接一比特地按顺序传送的方式称为串行通信。如图8.1(a)所示的并行通信中,一个字节(8位)数据是在8条并行传输线上同时由源传到目的地;而在图8.1(b)所示的串行通信方式中,数据是在单条1位宽的传输线上
一位接一位地顺序传送。这样一个字节的数据要分8次由低位到高位按顺序一位位地传送。由此可见,串行通信的特点如下:
1、节省传输线,这是显而易见的。尤其是在远程通信时,此特点尤为重要。这也是串行通信的主要优点。
2、数据传送效率低。与并行通信比,这也这是显而易见的。这也是串行通信的主要缺点。
例如:传送一个字节并行通信只需要1T的时间,而串行通信至少需要8T的时间。由此可见,串行通信适合于远距离传送,可以从几米到数千公里。对于长距离、低速率的通信,串行通信往往是唯一的选择。并行通信适合于短距离、高速率的数据传送,通常传输距离小于30米。特别值得一提的是,现成的公共电话网是通用的长距离通信介质,它虽然是为传输声音信号设计的,但利用调制解调技术,可使现成的公共电话网系统为串行数据通信提供方便、实用的通信线路。
形式和标准
调幅方式
串行数据在传输时通常采用调幅(AM)和调频(FM)两种方式传送数字信息。远程通信时,发送的数字信息,如二进制数据,首先要调制成模拟信息。幅度调制是用某种电平或电流来表示逻辑“1”,称为传号(mark);而用另一种电平或电流来表示逻辑“0”,称为空号(space)。出现在传输线上的mark/space的串行数据形式。
使用mark/space形式通常有四种标准,TTL标准、RS-232标准、20mA电流环标准和60mA电流环标准。
①TTL标准:用+5V电平表示逻辑“1”;用0V电平表示逻辑“0”,这里采用的是正逻辑。
②RS-232标准:用-3V—-15V之间的任意电平表示逻辑“1”;用+3V—+15V电平表示逻辑“0”,这里采用的是负逻辑。
③20mA电流环标准。线路中存在20mA电流表示逻辑1,不存在20mA电流表示逻辑0。
④60mA电流环标准。线路中存在60mA电流表示逻辑1,不存在60mA电流表示逻辑0。
调频方式
频率调制方式是用两种不同的频率分别表示二进制中的逻辑1和逻辑0,通常使用曼彻斯特编码标准和堪萨斯城标准。
①曼彻斯特编码标准:这种标准兼有电平变化和频率变化来表示二进制数的0和1。每当出现一个新的二进制位时,就有一个电平跳变。如果该位是逻辑1,则在中间还有一个电平跳变;而逻辑0仅有位边沿跳变。所以逻辑1的频率比逻辑0的频率大一倍。曼彻斯特编码标准通常用在两台计算机之间的同步通信。
堪萨斯城标准:它用频率为1200Hz中的4个周期表示逻辑0,而用频率为2400Hz中的8个周期表示逻辑1。
数字编码方式
⑴NRZ编码
NRZ编码又称为不归零编码,常用正电压表示“1”,负电压表示“0”,而且在一个码元时间内,电压均不需要回到零。其特点是全宽码,即一个码元占一个单元脉冲的宽度。
曼彻斯特(Manchester)编码
曼彻斯特编码中,每个二进制位(码元)的中间都有电压跳变。用电压的正跳变表示“0”,电压的负跳变表示“1”。由于跳变都发生在每一个码元的中间位置(半个周期),接收端就可以方便地利用它作为同步时钟,因此这种曼彻斯特编码又称为自同步曼彻斯特编码。目前最广泛应用的局域网以太网,在数据传输时就采用这种数字编码。
导数曼彻斯特编码
微分曼彻斯特编码是曼彻斯特编码的一种修改形式,其不同之处时:用每一位的起始处有无跳变来表示“0”和“1”,若有跳变则为“0”,无跳变则为“1”;而每一位中间的跳变只用来作为同步的时钟信号,所以它也是一中自同步编码,同步曼彻斯特编码和微分曼彻斯特编码的每一位都是用不同电平的两个半位来表示的,因此始终保持直流的平衡。不会造成直流的累积。
数据传输率
数据传输率是指单位时间内传输的信息量,可用比特率和波特率来表示。
⑴比特率:比特率是指每秒传输的二进制位数,用bps(刨刀/s)表示。
⑵波特率:波特率是指每秒传输的符号数,若每个符号所含的信息量为1比特,则波特率等于比特率。在计算机中,一个符号的含义为高低电平,它们分别代表逻辑“1”和逻辑“0”,所以每个符号所含的信息量刚好为1比特,因此在计算机通信中,常将比特率称为波特率,即:
1波特(B)=1比特(bit)=1位/秒(1bps)例如:电传打字机最快传输率为每秒10个字符/秒,每个字符包含11个二进制位,则数据传输率为:10Baud。11位/字符×10个字符/秒=110位/秒=110bps。计算机中常用的波特率是:110、300、600、1200、2400、4800、9600、19200、28800、33600,目前最高可达56Kbps.
⑶位时间Td
位时间是指传送一个二进制位所需时间,用Td表示。Td=1/波特率=1/B
例如:B=110波特/秒,则Td=1/110≈0.0091s
发送时钟接收时钟
在串行通信中,二进制数据以数字信号的信号形式出现,不论是发送还是接收,都必须有时钟信号对传送的数据进行定位。在TTL标准表示的二进制数中,传输线上高电平表示二进制1,低电平表示二进制0,且每一位持续时间是固定的,由发送时钟和接收时钟的频率决定。
⑴发送时钟
发送数据时,先将要发送的数据送入移位寄存器,然后在发送时钟的控制下,将该并行数据逐位移位输出。通常是在发送时钟的下降沿将移位寄存器中的数据串行输出,每个数据位的时间间隔由发送时钟的周期来划分。
⑵接收时钟
在接收串行数据时,接收时钟的上升沿对接收数据采样,进行数据位检测,并将其移入接收器的移位寄存器中,最后组成并行数据输出。
⑶波特率因子
接收时钟和发送时钟与波特率有如下关系:F=n×B这里F是发送时钟或接收时钟的频率;B是数据传输的波特率;n称为波特率因子。设发送或接收时钟的周期为Tc,频率为F的位传输时间为Td,则:Tc=1/F,Td=1/B得到:Tc=Td/n在实际串行通信中,波特率因子可以设定。在异步传送时,n=1,16,64,实际常采用n=16,即发送或接收时钟的频率要比数据传送的波特率高n倍。在同步通信时,波特率因子n必须等于1。
标准
典型的串行通讯标准是RS232和RS485。它们定义了电压,阻抗等。但不对软件协议给予定义。
区别于RS232, RS485的特性包括:
1. RS-485的电气特性:逻辑“1”以两线间的电压差为+(2—6) V表示;逻辑“0”以两线间的电压差为-(2—6)V表示。接口信号电平比RS -232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。
2. RS-485的数据最高传输速率为10Mbps。
3. RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。
4. RS-485接口的最大传输距离标准值为4000英尺,实际上可达 3000米,另外RS-232-C接口在总线上只允许连接1个收发器,即单站能力。而 RS-485接口在总线上是允许连接多达128个收发器。即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串口调试软件。因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用STP传输。 RS485接口接插件采用DB-9的9芯航空插头,与智能终端RS485接口采用DB-9(孔) ,与键盘连接的键盘接口RS485采用DB-9(针)。
RS485编程
串行通讯接口协议只是定义了传输的电压,阻抗等,编程方式和普通的串口编程一样。
RS-232与RS-422之间转换原理和接法
通常我们对于视频服务器录像机、切换台等直接播出、切换控制主要使用串口进行,主要使用到RS-232、RS-422与RS-485三种接口控制。下面就串口的接口标准以及使用和外部插件电缆进行探讨。
RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。例如:视频服务器都带有多个RS422串行通讯接口,每个接口均可通过RS422通讯线由外部计算机控制实现记录与播放。视频服务器除提供各种控制硬件接口外,还提供协议接口,如RS422接口除支持RS422的Profile协议外,还支持 Louth、Odetics 、BVW等通过RS422控制的协议。
RS-232、RS-422与RS-485都是串行数据接口标准,都是由EIA(EIA)制订并发布的,RS-232在1962年发布。RS-422由RS-232发展而来,为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(速率低于100Kbps时),并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485A标准。
1. S-232串口调试软件标准
目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。收、发端的数据信号是相对于信号地。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在-5~-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回TTL电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20Kbps。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。
2. RS-422与RS-485串口调试软件标准
(1)平衡传输
RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2V~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。
(2)RS-422电气规定
由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mbps。其平衡双绞线的长度与传输速率成反比,在100Kbps速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mbps。RS-422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。
(3)RS-485电气规定
由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信。RS-485总线,在要求通信距离为几十米到上千米时,广泛采用RS-485 串行总线标准。RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。加上总线收发器具有高灵敏度,能检测低至200mV的电压,故传输信号能在千米以外得到恢复。 RS-485采用半双工工作方式,任何时候只能有一点处于发送状态,因此,发送电路须由使能信号加以控制。RS-485用于多点互连时非常方便,可以省掉许多信号线。应用RS-485 可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。 RS-485与RS-422的不同还在于其共模输出电压是不同的,RS-485是-7V至+12V之间,而RS-422在-7V至+7V之间;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。RS-485与RS-422一样,其最大传输距离约为1219米,最大传输速率为10Mbps。平衡双绞线的长度与传输速率成反比,在100Kbps速率以下,才可能使用规定最长的电缆长度。只有在很短的距离下才能获得最高速率传输。一般100米长双绞线最大传输速率仅为1Mbps。
(4)RS-422与RS-485的网络安装注意要点
RS-422可支持10个节点,RS-485支持32个节点,因此多节点构成网络。网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:
* 采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。
* 应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。
总之,应该提供一条单一、连续的信号通道作为总线
插口种类及转换
串行通讯接口是一种接口标准,它规定了接口的电气标准,简单说只是物理层的一个标准。没有规定接口插件电缆以及使用的协议,所以只要我们使用的接口插件电缆符合串口标准就可以在实际中灵活使用,在串口接口标准上使用各种协议进行通讯及设备控制。
以上我们了解了串口的协议,而我们日常工作中接触最多的是实际的一些设备的外部接口,我们如何从外形上就知道它是那种接口呢?制作线缆各针脚如何定义?上面我们知道了串口RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件电缆或协议,在此基础上用户可以建立自己的高层通信协议。从我们实际工作中碰到的使用最多的插口有三种DB9 DB25 RJ45,上面三种插口插件都可以用作串行通讯接口插口插件,也可以通过线缆进行插口之间的转换。下面我们就三种插口的针脚定义分别说明,三个插口之间的转换也只要按照插口定义的线缆跳接即可。
* DB9(9脚插口插座)
* DB25(25脚插口插座)
* 还有一种插口是RJ45,比如湖北台使用的品尼高mss1600、mss700视频服务器的编解码板控制口都为串口,插口是RJ45的,而播控机的串口插口是DB9,因此我们就需要使用转换线缆。
RS485 半双工接法为:RX+ 和TX+ 并联为数据+;RX- 和小行星775 并联为Data-。RS485 全双工/RS422 接法为:FULL 和GND 短接;信号线为RX+,TX+,RX-,TX-,可根据需要连接GND。
扩展
串行通讯接口的扩展,我们知道一般一台计算机有两个串口,而对于一台播控计算机需要控制的设备远远不止两台设备,我们需要同时控制视频服务器录像机、切换台、字幕机等各种设备。所以我们就需要对串口进行扩展,我们可以使用串口扩展卡对串口进行扩展,比如我们在播控系统中使用的串口扩展卡moxa CI-134。
MOXA CI-134是专为工业环境通信应用设计的 RS-422/485 四串口卡。它支持4个独立的RS-422/485串行通讯接口,在一对多点的通信应用下,最多可控制128 个设备。为使RS-485 2线半双工操作变得更加简单,每片 CI-134 卡都具有数据流向自动控制(ADDC),不需软件操作。因此,在Windows应用下不需额外的编码就能控制RS-485半双工协议。为达到工业环境对高可靠性产品的要求,本系列产品提供可选择的光电隔离(2 KV)和浪涌保护(25 KV ESD)功能。
该产品特点包括:可选择光电隔离(2KV)和浪涌保护(25KV ESD)功能;提供数据流向自动控制ADDC (Automatic 数据 Direction ctrl)功能;RS-485 数据控制l: ADDC 或通过 RTS控制;内建终端电阻;采用芯片硬件流量控制,保证数据不流失;采用先进 ASIC 设计,返修率低;支持众多常见的操作系统。
应用
我们知道串行通讯接口RS232有效传输距离为15米, RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mbps。我们播控中使用的录像机如DVCPRO、IMX控制接口有RS232、RS422多个接口供选择,如果使用pin9则为RS422接口,视频服务器编解码口控制都是RS422接口,只是插口为RJ45不是DB9的,需要转换线缆进行转换。因此我们在控制中根据以上特性可以灵活使用,我们由于主备控制切换的需要,以及距离的考虑统一选用RS422倒换开关进行倒换,控制RS422倒换开关的为RS232控制接口,这个直接由播控机本身的COM口来控制倒换开关进行倒换,其他控制录像机、切换台、视频服务器编解码卡使用MOXA卡扩展的RS422接口进入RS422倒换开关进行倒换。
整个系统中只有RS422倒换开口控制是播控机的COM(RS232)口控制,其他都是MOXA卡扩展的RS422接口,由于应急开关需要RS232所以在应急开关前面加了一个RS422转RS232的转换器。通过控制线播控机可以及时发出播控指令,也可以随时读取录像机、切换台、还有视频服务器的状态。以上只是播控机房的系统控制图。上载、总控机房的系统控制大致和这相同。
RS422总线、RS485和RS422电路原理基本相同,都是以差动方式发送和接受,不需要数字PE线。差动工作是同速率条件下传输距离远的根本原因,这正是二者与RS232的根本区别,因为RS232是单端输入输出,双工工作时至少需要数字地线、发送线和接受线三条线(异步传输),还可以加其它控制线完成同步等功能。RS422通过两对双绞线可以全双工工作收发互不影响,而RS485只能半双工工作,发收不能同时进行,但它只需要一对双绞线。以上三种接口各有缺点,在实际工作中可以根据需要灵活选用。
异步通信
1、串行异步通信时的数据格式
异步方式通信ASYNC(AsynchronousDataCommunication),又称起止式异步通信,是计算机通信中最常用的数据信息传输方式。它是以字符为单位进行传输的,字符之间没有固定的时间间隔要求,而每个字符中的各位则以固定的时间传送。收、发双方取得同步的方法是采用在字符格式中设置起始位和停止位。在一个有效字符正式发送前,发送器先发送一个起始位,然后发送有效字符位,在字符结束时再发送一个停止位,起始位至停止位构成一帧。
串行异步传输时的数据格式:
⑴起始位:起始位必须是持续一个比特时间的逻辑“0”电平,标志传送一个字符的开始。
⑵数据位:数据位为5-8位,它紧跟在起始位之后,是被传送字符的有效数据位。传送时先传送字符的低位,后传送字符的高位。数据位究竟是几位,可由硬件或软件来设定。
⑶奇偶位:奇偶校验位仅占一位,用于进行奇校验或偶校验,也可以不设奇偶位。
⑷停止位:停止位为1位、1.5位或2位,可有软件设定。它一定是逻辑“1”电平,标志着传送一个字符的结束。
⑸空闲位:空闲位表示线路处于空闲状态,此时线路上为逻辑“1”电平。空闲位可以没有,此时异步传送的效率为最高。
2、串行异步通信时的数据接收
串行异步通信时,接收方不断地检测或监视串行输入线上的电平变化,当检测到有效起始位出现时,便知道接着是有效字符位的到来,并开始接收有效字符,当检测到停止位时,就知道传输的字符结束了。经过一段随机时间间隔之后,又进行下一个字符的传送过程。通常接收端的采样时钟周期要比传输字符的位周期短,常用的采样时钟频率为位频率的16倍,采取这种措施是为了提高抗干扰能力,参看图8.19所示。从图中可知,传输字符的位周期Td等于采样时钟周期Tc的16倍。接收器的采样时钟的每个上升沿对输入信号进行采样,检验接收数据线上的低电平是否保持8或9个连续的时钟周期,以确定传输线上的低电平是否是真的起始位。这样就可以避免噪声干扰引起的误操作,从而删除假的起始位。相当精确地确定起始位的中间点,从而提供一个时间基准,从这个基准开始,每隔16个Tc对其余数据位采样,以确保传输数据的正确性。
接收端为实现采样数据的基准,可以执行以下步骤:
⑴在接收端设置一采样时钟频率计数器,当检测到起始位下降沿时,将其清零,并开始对采样时钟计数,即每来一个时钟,计数器加1。
⑵当计数器计到8时,表示已到达起始位的中间位置,此时采样值为0,说明是真正的起始位,同时将计数器清零;若采样值不为0,则说明一开始检测到的下降沿不是真正的起始位前沿,而是一次干扰,此次检测应作废,计数器清零,并重新开始检测起始位。
⑶检测到真正的起始位后,计数器清零,以后每次计到16时,便采样收到的信号波形(即每一位的中间),将采到的数值暂存起来,同时将计数器清零,重新计数,直至最后的停止位被采样。
⑷如果停止位采样正确(为1),则字符被接收,并由暂存器装入寄存器。若停止位采样值为0,说明同步或传输有问题,此次采样所得字符作废,不被接收。
异步通信的特点
⑴起止式异步通信协议传输数据对收发双方的时钟同步要求不高,即使收、发双方的时钟频率存在一定偏差,只要不使接收器在一个字符的起始位之后的采样出现错位现象,则数据传输仍可正常进行。因此,异步通信的发送器和接收器可以不用共同的时钟,通信的双方可以各自使用自己的本地时钟。
⑵实际应用中,串行异步通信的数据格式,包括数据位的位数、校验位的设置以及停止位的位数都可以根据实际需要,通过可编程串口调试软件电路,用软件命令的方式进行设置。在不同传输系统中,这些通信格式的设定完全可以不同;但在同一个传输系统的发送方和接收方的设定必须一致,否则将会由于收、发双方约定的不一致而造成数据传输的错误与混乱。
⑶串行异步通信中,为发送一个字符需要一些附加的信息位,如起始位、校验位和停止位等。这些附加信息位不是有效信息本身,它们被称为额外开销或通信开销,这种额外开销使通信效率降低。例如一个字符由7位组成,加上一位起始位、一位校验位和一位停止位,发送一个字符必须发送10位,而其中只有7位是有效的,其余3位不是有效的,使通信能力的30%成了额外开销。所以异步通信适用于传送数据量较少或传输要求不高的场合。对于快速、大量信息的传输,一般采用通信效率较高的同步通信方式。
⑷串行异步通信依靠对每个字符设置起始位和停止位的方法,使通信双方达到同步。
通信协议
普遍协议
最被人们熟悉的串行通信技术标准是EIA-232、EIA-422和EIA-485,也就是以前所称的RS-232、RS-422和RS-485。由于EIA提出的建议标准都是以“RS”作为前缀,所以在工业通信领域,仍然习惯将上述标准以RS作前缀称谓。
EIA-232、EIA-422和EIA-485都是串行数据接口标准,最初都是由EIA(EIA)制订并发布的,EIA-232在1962年发布,后来陆续有不少改进版本,其中最常用的是EIA-232-C版。
目前EIA-232是PC机与通信工业中应用最广泛的一种串口调试软件。EIA-232被定义为一种在低速率串行通信中增加通信距离的单端标准。EIA-232采取不平衡传输方式,即所谓单端通信。标准规定,EIA-232的传送距离要求可达50英尺(约15米),最高速率为20kbps。
由于EIA-232存在传输距离有限等不足,于是EIA-422诞生了。EIA-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(约1219米),并允许在一条平衡总线上连接最多10个接收器。当然,EIA-422也有缺陷:因为其平衡双绞线的长度与传输速率成反比,所以在100kbps速率以内,传输距离才可能达到最大值,也就是说,只有在很短的距离下才能获得最高传输速率。一般在100米长的双绞线上所能获得的最大传输速率仅为1Mbps。另外有一点必须指出,在EIA-422通信中,只有一个主设备(Master),其余为从设备(Salve),从设备之间不能进行通信,所以EIA-422支持的是点对多点的双向通信。
为扩展应用范围,EIA于1983年在EIA-422基础上制定了EIA-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485A标准。
由于EIA-485是从EIA-422基础上发展而来的,所以EIA-485许多电气规定与EIA-422相仿,如都采用平衡传输方式、都需要在传输线上接终接电阻、最大传输距离约为1219米、最大传输速率为10Mbps等。但是,EIA-485可以采用二线与四线方式,采用二线制时可实现真正的多点双向通信,而采用四线连接时,与EIA-422一样只能实现点对多点通信,但它比EIA-422有改进,无论四线还是二线连接方式总线上可接多达32个设备。
USB
USB是英文UniversalSerialBus的缩写,翻译成中文的含义是“USB”。
从技术上看,USB是一种串行总线系统,它的最大特性是支持PnP热插拔功能。在Windows 2000的操作系统中,任何一款标准的USB设备可以在任何时间、任何状态下与计算机连接,并且能够马上开始工作。
USB诞生于1994年,是由康柏电脑、IBM、英特尔微软共同推出的,旨在统一外设接口,如打印机、外置Modem、扫描仪、鼠标等的接口,以便于用户进行便捷的安装和使用,逐步取代以往的串行通讯接口、并口和PS/2接口。
发展至今,USB共有四种种标准:1996年发布的USB1.0,1998年发布的USB1.1以及刚刚发布的最新标准USB2.0,2008年USB3.0PromoterGroup宣布新一代USB3.0标准已经正式完成并公开发布。此四种标准最大的差别就在于数据传输速率方面,当然,在其他方面也有不同程度的改进。就目前的USB3.0而言,最大传输带宽高达5.0Gbps,也就是640MB/s,同时能够兼容USB2.0。
目前在IT领域,USB接口可谓春风得意。人们在市场上可以看到,每一款计算机主板都带有不少于2个USB接口,USB打印机、USB调制解调器、USB鼠标、USB音箱、USB存储器等产品越来越多,USB接口已经占据了串行通信技术的垄断地位。
但是,在工业领域,使用USB接口的产品则甚为少见。在工业领域,人们更要求产品的可靠性和稳定性,目前,EIA标准下的串行通信技术完全可以满足人们对工业设备传输的各种性能要求,而且,这些产品价格非常低廉。相比之下,USB价格较高,并且其PnP的功能在工业通信中没有优势。因为工业设备一般连接好以后很少进行重复插拔,USB特性的优越性不能很好地被体现出来,也就得不到工业界的普遍认可。因此,在工业领域,EIA标准依然占据统治地位。
IEEE1394
IEEE1394是一种与平台无关的串行通信协议,标准速度分为100Mbps、200Mbps和400Mbps,是IEEE(电气与电子工程师协会)于1995年正式制定的总线标准。目前,1394商业联盟正在负责对它进行改进,争取未来将速度提升至800Mbps、1Gbps和1.6Gbps这三个档次。相比于EIA接口和USB接口,IEEE1394的速度要高得多,所以,IEEE1394也称为高速串行总线。
IEEE1394提供了一种高速的PnP总线。接入这条总线,各种外设便不再需要单独供电,它也支持等时的数据传输,是将计算机和消费类电器连接起来的重要桥梁。例如,用户可以在计算机上接驳一部数字vcr,把它当作一个普通的外设使用,既可用来播放电影,亦可以录制在计算机上编辑视频流。除此以外,带有IEEE1394接口的DV(数字视频)摄影机和数字卫星接收器目前均已上市。由于速度非常快,所以它是消费类影音(A/V)电器、存储、打印、高分辨率扫描和其他便携设备的理想选择。
从技术上看,IEEE1394具有很多优点,首先,它是一种纯数字接口,在设备之间进行信息传输的过程中,数字信号不用转换成模拟信号,从而不会带来信号损失;其次,速度很快,1Gbps的数据传输速度可以非常好地传输高品质的多媒体数据,而且设备易于扩展,在一条总线中,100Mbps、200Mbps和400Mbps的设备可以共存;另外,产品支持热插拔,易于使用,用户可以在开机状态下自由增减IEEE1394接口的设备,整个总线的通信不会受到干扰。
有关动态
IEEEP802.3bs400Gbs工作组在最近的IEEE802.1/IEEE802.3联合会议上同意采用基于4波长100Gbps的新的单模光纤PMD(物理层媒介关联)技术标准。这意味着持续数月的关于串行100Gbps技术是否足够成熟的讨论暂时告一段落。lightwave1月份的文章曾经报道过当时只有三分之一的成员同意这一标准,另外三分之一支持8X50Gbps。
IEEEP802.3bs工作组成员投票采用基于PAM-4调制技术的4X100GbpsPMD格式,500米传输。这种技术类似于PSM4MSA采用的4X25Gbps格式。此次投票还通过了8x50Gbps10公里的标准,这种格式也采用了PAM-4调制。调制格式上,此前曾考虑过PAM16和PAM8,但这次PAM-4占了上风。
IEEEP802.3bs工作组近期工作主要围绕制定100米多模光纤,500米单模光纤,2公里单模光纤,10公里单模光纤的相关标准。在多模光纤应用上,16X25Gbps的NRZ格式获得了迅速通过。但是单模光纤应用方面,关于50Gbps还是100Gbps单波长,调制采用NRZ还是什么PAM-4,DMT都一直在激烈辩论。
在400Gbps模块中引入4X100Gbps沿袭了IEEE802.3ba的4X10bps以及4X25Gbps采用4路复用的传统,而且只采用4路激光器探测器能够降低成本。对于4X100Gbps的电接口,有此前制定的PMA(物理层媒介连接Attachment)子层也不是大问题。但是100Gbps串行技术的实现离不开DSP,现有DSP技术的功耗和尺寸都是挑战。
干扰因素
串行通信工作场所多处于强电/户外等复杂环境,并且通信各方间距离一般较长,因此易受干扰。串行通信,波特率一定时,数据位的传输时间相对较短,由于串行通信的数据位采样/获取特点,位信息受干扰,整个字节数据就是错误信息。
现实中,容易带入串行通信干扰的因素包括:
(1)环境电磁干扰在串行通信工作设备附近,无可避免的存在强电设备、功率发射台等。这些设备发射/感应的强电磁场感应区内,环境电磁干扰强。串行通信设备工作在这种环境下,由于噪声(干扰)在信号电平上的叠加,引发了通信双方数据错误。
(2)系统噪声
串行通信依赖于串行通信芯片。由于芯片的设计工艺与制作水平,对输出电平的噪声控制参差不齐。产生输出电平的噪声包括数字逻辑中供电电源和器件自身的稳定性。通信中,供电电源的纹波无可避免的会加载到通信线路中。纹波较大时,容易引发串行通信的错误。
(3)码率误差
串行通信双方事先约定了固定的波特率作为数据传输的步调。波特率的一致性是串行通信数据稳定可靠的基础。由于通信双方的波特率由各自本地产生,存在误差率的波特率导致通信双方存在码率误差。波特率误差越大,通信数据错误的几率就越大。
(4)地回路与参考地电位
通信双方共地应用中,由于系统间参考地信号的高低电平不一致,导致传输的信号对地电压存在一定的误差。低电压供电应用系统中,两侧参考地电位误差过大,会引发串行通信的数据错误。以上干扰源,在通信线屏蔽、线路隔离、校准波特率等不同的硬件优化措施下,可以减弱或消除部分干扰,但仍存在数据错误的可能性。因此,在硬件抗干扰的保障之外,加入软件侦错机制,不可忽略,尤为必要。
隔离方法
隔离的现实需要
串行通信由于其工作特点(按位传输易受干扰、远距离信息交换)、应用场合(恶劣环境的工业控制、户外等)、器件间电平匹配(两侧器件的工作电平不一致等),需要做相应的隔离防护。通过隔离,达到以下目的。(1)器件保护,防护隔离在电子器件高速发展的今天,低功耗、高封装的芯片应用广泛。微处理器的低电压工作条件和外围器件的高电压工作环境,其发展进程不一。当前微处理器芯片电平多以1.8V、3.3V、5.0V等低电压器件为主,而且随着不同工作电压的数字IC的不断涌现,逻辑电平转换的必要性更加突出。例如STM32控制器的3.3V输入输出I/O与传统串行通信接口芯环境,其发展进程不一。因此,为了实现控制器与通信接口芯片间的电平匹配,保护控制器引脚因过高或者过低的工作电压而受损,加入隔离器件尤其必要。
(2)屏蔽干扰,线路隔离由于较多串行通信设备工作在工业现场的恶劣环境或配电系统的远距离传输等条件下,因此在长线通讯中线路上往往会感应出明显的干扰信号,造成通信过程的偶发性错误,进而影响整个系统的可靠运行。引入干扰信号的来源包括空间辐射、串扰、系统噪声等。例如RS-232C通信中由于其采用单端信号传输模式,当通信双方的不同PE线之间的地电势不一致时,就会引入共模干扰电压,造成通信的不稳定。
串行通信中,通过通信线路屏蔽可以减少辐射干扰的影响,通过差分方式信号传输方式可以减少共模干扰电压的影响,但为应对器件保护而进行的电平变换和为减少干扰而设计的线路隔离,仍必不可少。
隔离的方法应用
(1)分立器件隔离技术
在隔离设计需要中,器件间电平变换隔离方法可采用单纯的分立器件完成。电平变换的最终目的就是实现工作单元两侧的电平根据各自需要而定。分立器件隔离方法主要利用的就是电阻器晶体管的合理搭配,使得输入/输出间的电平实现匹配。利用MOS管的开关作用,实现双侧电平变换,是常规有效的方法。此种隔离方法,一般为共地隔离,仅完成电平变换,做到保护器件功能,非系统间电气隔离
(2)光电耦合器隔离技术
光电耦合器,简称光耦,是一种以光为媒介来实现电信号传输的一类器件。其工作原理是把发光器(发光器件)与感光器(光电器件)封装在芯片内部,通过外加在输入端的电信号控制发光器发光,感光器在内部光照的情况下,产生电信号,驱动输出端,实现了“电—光—电”转换。由于光耦两侧的电信号完全隔离,内部以光为传输媒介,因此,光耦输入/输出之间绝缘,可以完成单向信号的隔离传输,在数字电路中应用广泛。普通光耦(TLP521)在隔离电路中的应用,受限于器件特点,其传输特性低频效果较好,高频信号传输失真严重。实际电路测试中,115kbp的串行通信频率,通过电路器件参数匹配和电路结构优化,可基本适应。从东芝半导体公司光耦产品系中可知,其通信速率涵盖了20kbps~50Mbps,因此在高速通信传输时,应根据设计需要选用高速光耦。
(3)新型隔离技术
在产品日新月异的时下,新器件层出不穷。主流芯片商德州仪器(TI)、亚诺德半导体(ADI)和芯科科技(Silicon Labs)分别研发了电容隔离、磁耦隔离、射频隔离等不同类型的数字隔离器
电容隔离
电容隔离,利用了电容极板间填充材料为绝缘物质为隔离层,通过内部电场的变化来完成信号的传输。TI公司的ISO72x系列为典型电容隔离技术的应用。在电容隔离功能中,信号传输通道分为“低频通道”与“高频通道”。低频信号通过内置振荡器产生的高频载波与PWM调制,通过差分方式进行调制传输。输出端低通滤波去除高频载波。高频信号则不经过调制编码,差分变换后直接通过隔离层传输,输出端通过时间关系进行逻辑决策,从而控制输出多路选择器正确输出。
磁耦隔离
磁耦隔离,利用了变压器原理,使用变压器一次侧与次级线圈两者之间通过磁耦合方式进行信号传递,从而实现隔离效果。亚德诺半导体的iCoupler专利技术,就是基于芯片内空芯变压器的磁隔离技术。ADUM系列为典型磁耦隔离技术的应用。
iCoupler磁隔离技术,通过芯片内部特征尺寸上实现的空芯变压器初级与次级线圈间的磁耦合实现信号隔离。信号传输采用了特定短脉冲组合方式来表示高低电平。两个连续的短脉冲表示高电平,单个短脉冲表示低电平。输出端根据检测脉冲的个数来确定输出电平状态。刷新器电路与看门狗电路提供了输入端电平状态与输出端故障安全状态方面的保障。
射频隔离
射频隔离,利用了无线射频传输原理。在发送端,完成基于高频信号的原始信号调制,通过发射天线发送。在接收端,通过解调器完成已调信号的解调,恢复原始信号。通过这样的调制与解调,实现隔离的效果。Silicon Labs公司的RF隔离即射频隔离,Si84xx系列为典型射频隔离技术的应用。
RF隔离采用ISOpro型RF射频隔离原理。芯片由半导体RF射频发射器、接收器和两者间的差动电容式隔离隔栅组成。工作中,使用基本的ON/OFF按键(OOK功能),输入数据为高电压时,发射器产生RF射频调制信号;输入数据为低电平时,发生器无RF射频调制信号。调制信号经过隔离隔栅送到接收器。接收器检测到同频带调制信号时,经解调器解调,输出高电平;无调制信号时,输出低电平。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
技术简介
基本概念
同步通信
异步通信
主要特点
形式和标准
调幅方式
调频方式
数字编码方式
数据传输率
发送时钟接收时钟
标准
插口种类及转换
扩展
应用
异步通信
通信协议
有关动态
干扰因素
隔离方法
参考资料