骨桥蛋白(osteopontin, OPN)是一种
蛋白质,广泛的分布于多种组织和
细胞中,能够参与组织修复,自身代谢等功能。
研究历史
1979年Senger等首次报道与恶性转化有关的一种包含RGD整合素结合区的
磷酸化糖蛋白与肿瘤的关系,称之为转化
相关性磷酸蛋白。后来Franzen等从骨基质和牙齿中分离出一种磷酸蛋白,特性与转化相关性磷酸蛋白相似,人们将其命名为OPN.后来一些学者在不同的组织细胞中发现了OPN,因此OPN曾被称为44kD骨酸蛋白,PP69,骨延蛋白1,尿蛋白,分泌的磷蛋白、骨
唾液酸蛋白、44kD骨磷蛋白和。自1986年来相继
克隆了大、
小鼠OPN,人OPN,猪OPN,牛OPN,鸡OPN和兔OPNc
脱氧核糖核酸近年来,OPN在早期
细胞免疫应答、肉芽肿炎症、肿瘤发生及转移的作用中倍受关注。(有删减)
基因结构
OPN人的OPN基因定位在
染色体4q13,是单一编码基因,8kb大小,具有7个
外显子和6个
内含子组成。小鼠位于
5号染色体上,基因长约7Kb,包括7个外显子,其5’端有
启动子序列,该启动子中IKb长度也被测序并用GCG
程序分析了
转录因子的可能识别部位,这些转录因子包括API-5、PEA-3、PEA-1、Ets等。
OPN基因结构的变异性较大。OPN本身是多
等位基因,在
小鼠有3个等位基因,人类至少有2个等位基因。通过比较分析,发现尽管不同种属甚至同一种属不同组织的OPN基因具有一定的多态性,其总体核酸序列还是呈中度保守性,其中编码N末端和C末端以及含RGD序列的50个氨基酸区具有高度序列保守性。
OPN
启动子包括1个TATA盒(-28-22)、1个颠倒的CCAAT盒(-55-50)及1个GC盒及多种
转录因子的结合位点。API结合部位是高度保守的增强子样元件。OPN基因启动子上含有多个应答元件,如VitD反应元件,
糖皮质激素反应元件,Ras反应元件,激活蛋白(AP)21结合位点等。在OPN启动子上有5个PEA-3的识别位点,PEA是
癌基因转录因子Ets家族的重要靶点,在多种基因的TPA应答中起重要作用。RAE是ras激活元件,位于OPN
启动子的-725-712,它是一个类Ets序列,在Ha-ras
转染细胞O田N
转录增强与其有关。在启动子颠倒的CCAAT盒上,距转录起始点-53-49处有-v-Sre反应元件,其参与介导v-Src转染细胞中OPN转录水平的上调。启动子中还存在BPV-E2(十70-+82)及API/PEA-1结合位点(-718-714,-312-305),它们都与
癌基因激活的表达增强有关,BPV-E2是一个由牛
乳头瘤病毒工型所编码的
转录因子,能使病毒转化
啮齿动物的细胞。此外,研究发现,OPN基因5 '上游侧区有孕激素调控元件。
蛋白结构
OPN作为带负电的非胶原性骨基质糖蛋白,广泛的分布于多种组织和
细胞中,其相对分子质量约为44 kDa,约含300 个
残基,其中
天门冬氨酸、
丝氨酸和
谷氨酸残基占有很高的比例,约占总氨基酸量的一半。骨桥蛋白多肽链的
二级结构中包括8个α
尾旋和6个β折叠结构,高度保守的RGD基元两端各有一个β折叠结构,分子中心部位是a螺旋结构。骨桥蛋白分子中约含有30个
低聚糖基,其中10 个是
唾液酸。
(1)精氨酸-
甘氨酸天冬氨酸(RGD)序列:Yee(1996年)提出OPN含有(Arg-
GlyAsp,RGD)序列,这一序列在不同物种的OPN中都普遍存在,这一序列对于OPN发挥粘附功能起着重要的作用。RGD序列为高度保守的特异性
细胞黏附功能阈,通过该序列可与细胞表面整合素受体 avβ、avβ3、avβ5等结合,介导糖蛋白与细胞间的粘附过程,引起局部黏附,改变
细胞骨架,促进细胞游。RGD序列具有高度保守性,一旦变异或缺失将丧失其促粘附的功能。
(2)凝血酶裂解位点:RGD序列结构中有RS位点,位于RGD序列
羧基端第6位
残基所形成的
肽键,是凝血酶的裂解位点,可将其裂解成45kD及24kD两个片断。其中45kD片断更能刺激
细胞的黏附和迁移。与完整的OPN分子相比,被凝血酶裂解后含有RGD序列的N末端片断(45kD片断)促进粘附的功能反而加强,而缺乏RGD序列的
氨基片断(24kD片断)其粘附能力减弱。凝血酶对OPN的
剪力很可能是机体对OPN功能的一种自然生理调节。
(3)
基质金属蛋白酶(MMP)作用位点:目前发现在OPN分子中存在3个MMP上的酶切位点和2个 MMP-7的酶切位点。与凝血酶的功能相似,OPN经MMP-3或MMP-7酶切以后其诱导巨噬细胞迁移的功能明显增强;
(4)非RGD
细胞粘附位点:在骨桥蛋白的
羧基末端序列中,还有一段非RGD的细胞粘附位点,OPN以非RGD依赖方式与细胞表面CD44结合而发挥细胞
信号分子的作用,其主要与细胞免疫有关;
(5)钙离子结合位点:
酪氨酸蛋白激酶Ⅱ、蛋白激酶C等能
催化骨桥蛋白分子中
丝氨酸和
Thr残基发生
磷酸化,磷酸化的OPN可与多个
ca(clo)2+结合在一起。
表达方式
正常情况下其表达甚微的细胞,如巨噬细胞、SMC、T
淋巴细胞、成
纤维细胞等在一些诱导因素下可以大量表达OPN,包括:
(1)
高血压:人
主动脉平滑肌
细胞暴露在160 mmHg的高压下3h,然后再培养,结果3h后发现高压组同非高压组相比
细胞增殖11%。免疫印迹分析发现,培养8 h以内OPN的表达没有明显的改变,24h后OPN表达比
对照组增加大约50%;
(2)
高血糖:
糖尿病人群中动脉粥样硬化的患病率较高,在糖尿病状态下,大鼠近端小管细胞中OPN表达上调,另外,无论是人类还是大鼠,其动脉中膜平滑肌细胞的OPN表达均明显亢进。高浓度葡萄糖处理的平滑肌
细胞表达OPN增加可被PKC抑制剂GF109203X抑制;
(3)低氧:对大鼠
主动脉平滑肌细胞进行研究发现,在缺氧(3%O2) 2 h后OPN mRNA及OPN 蛋白的表达增加,6、12 h后下降,24 h后又增加。PKC和P38丝裂原活化
蛋白激酶抑制剂可以明显减弱缺氧诱导的OPN表达,高浓度葡萄糖可以加强缺氧诱导的OPN表达;
(4)
干扰素:IFN-γ(1 000 U/ml)明显刺激平滑肌细胞内骨桥蛋白的表达,Western Blotting分析24 h干预组OPN量较
对照组提高71.18%,48 h后较对照组提高75.66%,说明IFN-γ能在基因水平上刺激大鼠平滑肌细胞内OPN的表达;
(5)成纤维细胞生长因子:成纤维细胞
生长因子1(FGF-1)可以与其受体结合刺激大鼠
主动脉平滑肌细胞表达OPN mRNA及OPN蛋白,高度选择性的FGF-1
受体酪氨酸激酶(Src)抑制剂PD166866可以减弱FGF-l诱导的OPN mRNA表达,另外PP2(Src特异性抑制剂)和丝裂原细胞外信号反应激酶(MEK)抑制剂PD98059都可以减弱FGF-l诱导的OPN 表达,说明FGF-1与FGFR-1结合在
转录水平上通过Src/MEK/MAP信号路径上调OPN的表达,通过OPN的表达可以介导成
纤维细胞的迁移;
(6)其他因素:内皮素-1、胰岛素样生长因子(IGF)、血小板源生长因子(PDGF)内皮
细胞生长因子样因子(
西妥昔单抗样因子)、转化生长因子 β(TGF-β)、AngⅡ和UTP等均能刺激血管内皮细胞和平滑肌细胞表达骨桥蛋白分子。
分布范围
OPN可表达于不同动物的各种组织里,如骨、肾(胎肾和成年肾)、肺、肝、
膀胱、
胰腺、
乳腺、
睾丸、脑、
骨髓和蜕膜。不同细胞类型也能表达OPN,如骨细胞、成骨细胞、破骨细胞、
软骨细胞、神经细胞、上皮细胞、内皮细胞、血管平滑肌细胞(SMC)、活化的T细胞、MФ和自然杀伤细胞(NK)细胞亚群;OPN也存在正常
体液里,如
血清、乳汁、尿液,胆汁。病理状态(
自体免疫性疾病、炎症和肿瘤)OPN表达增强,如
肺癌、
乳腺癌、
胃癌、卵巢癌、前列腺癌、
甲状腺癌、
皮肤癌及各种转化细胞系亦能高水平表达OPN,尿结石里也存在OPN。
正常的动脉壁OPN表达甚微或几乎不表达,但是在动脉粥样斑块处的泡沫细胞中或者钙化的部位OPN表达明显增加,人
主动脉粥样硬化斑块中的巨噬细胞、平滑肌细胞、内皮细胞都可以表达OPN mRNA及合成OPN。内皮细胞、平滑肌细胞、成
纤维细胞与OPN的作用依赖于RGD和Ca2+,抗 avβ3抗体可部分阻滞这些细胞向OPN迁移。
调节方式
结合位点
OPN分布广泛并受多种因素的调控,能与许多物质结合。
(1)结合多种整合素受体:已发现αvβ1、αvβ3、αvβ5、α5β1、α8β1、α4β1和α9β1等7种整合素能与OPN结合,2个α4β1整合素结合部位位于OPN的N-末端凝血酶片酸的38 aa结构域上,α9β1能结合凝血酶断裂的OPN N-末端上新型识别序列SVVYGLR。
(2)与CD44变异体(CD44V)结合:CD44V以非RGD序列结合OPN的C末端和N末端结构域。
(3)与补体H因子结合:OPN能以高亲和力结合H因子,调节补体活性。
(4)与
胰岛素样
生长因子结合蛋白-5(IGFBP-5)结合。
(5)其他:羟基磷灰石(HA)、纤连蛋白(FN)、Ⅰ型
胶原蛋白和
骨钙蛋白都能与OPN结合。非
磷酸化OPN(np69)能与可溶性FN形成免疫
配位化合物,而磷酸化OPN(pp69)能结合
细胞表面相关的FN。
自身调节
OPN有磷酸化和
去磷酸化两种形式,磷酸化修饰是影响OPN活性的一个重要因素。多种
激酶对OPN中
丝氨酸、
Thr残基发生磷酸化有不同部位,发生蛋白磷酸化部位不同可能是其组织特异性的原因之一。磷酸化后的OPN与细胞表面整合素受体结合,而去磷酸化OPN则能与CD44受体结合,从而引起不同的效应。完整的OPN分子经凝血酶
剪力成为两个大小不同的肽段,剪切后隐含于蛋白氨基酸链内部的受体结合部位RGD序列得以暴露,能够介导RGD序列依赖的
黑色素瘤细胞的粘附和迁移,而完整的OPN分子则不具有这样的功能。
骨桥蛋白基因5’上游-94~-80、-124~-115及-439~-409序列为
启动子或增强子顺式作用元件,它们与相应的
反式作用因子结合后,增强骨桥蛋白基因的表达,但在三者中,后者的作用较前二者弱。-107~-105区域为负调控元件,该元件与相应的反式作用因子结合后,降低骨桥蛋白的表达活性。
外部调节
OPN表达受激素
生长因子,
癌基因产物的调控。不同的
细胞类型可能有不同的调节机制,种因素能调控OPN的表达:
(1)感染和损伤能使T细胞和MФ的OPN上调表达。
(2)骨激素:VitD3通过OPN
启动子的VDRE应答元件刺激OPN基因
转录,VitD3和视黄酸都能使正常和转化的大鼠
骨细胞产生OPN,
甲状腺素(PTH)能显著地减少大鼠成骨细胞
肉瘤细胞系ROS17/2.8的OPN量。VitE能抑制大鼠肾OPN mRNA表达。
(3)性激素:17β-
雌二醇和孕都能诱导OPN的产生,雌激素能抑制平滑肌
细胞(VSMC)表达OPN。
(4)
细胞因子:IL-1能上向调节大鼠新月形肾小球肾炎表达OPN,并能调节成骨细胞表达OPN mRNA;Hoxa-9抑制TGF-β诱导OPN基因
转录;FGF亦能诱导OPN基因的表达,瘤坏死因子(TNF-α)、
血小板源性
生长因子(PDGF)、白细胞介素-1、成纤维生长因子(FGF)、转化生长因子β(TGF-β)和内皮生长因子(
西妥昔单抗)均能诱导OPN基因的表达,PDGF、bFGF、EGF、TGFβ、AngII等能够刺激血管内皮
细胞和平滑肌细胞表达骨桥蛋白分子。
(5)葡萄糖和
血清:高浓度的葡萄糖通过PKC依赖途径和己糖胺途径增强大鼠
主动脉平滑肌细胞表达OPN;血清活化的血管平滑肌细胞高水平表达OPN mRNA。
(6)肾素-血管紧张素系统(RAS):肾局部远段小管的RAS能上调OPN的产生,血管紧张素Ⅱ能直接增加人心脏OPN的表达。
(7)
钠盐饮食:高盐饮食能增强完整肾或培养的肾细胞表达OPN,而缺钠饮食能减少大鼠肾表达OPN。
(8)其他:低氧能刺激OPN mRNA
转录水平及OPN的产生,TPA、癌基因(ras)能诱导OPN mR-NA的转录。患IgA肾病的病人尿分泌OPN减少,振荡液体流动通过胞内
ca(clo)2+动员和MAPK活化调节OPN基因。AngⅡ能直接增加心脏OPN的表达。高蛋白和高胆固醇饮食可以诱导肾表达骨桥蛋白。
脂多糖(
LPS)和
一氧化氮(NO)激活的巨噬细胞,可诱导OPN基因表达和
蛋白质的分泌。肿瘤
促进剂佛波可通过激活多种
转录调控因子而增强骨桥蛋白基因表达。
生物学作用
1.
细胞粘附 OPN通过依赖RGD序列(αvβ1、αvβ3、αvβ5、αvβ1、α8β1)和非依赖RGD序列(α4β1、α9β1)结合存在于细胞表面上的多种整合素受体,起细胞粘附作用。OPN能粘附转化的JB6细胞和HL60细胞(αvβ5和α4β1受体),且OPN以非RGD形式结合转化的成
纤维细胞,凝血酶断裂的OPN能增强OPN与APP活化和佛波酯活化的
血小板和B
淋巴细胞的粘附以及T细胞的粘附。
2.细胞募集 在体外OPN是一种
化学趋化剂,外源性OPN以剂量依赖性方式(5.0~40 mg/L)指导成纤维细胞的迁移;它能刺激大鼠
和牛平滑肌
细胞的迁移,能支持粘附到人和
小鼠T细胞,在体内皮下注射OPN后,在注射部位附近,OPN可以直接地诱导趋化作用并间接协助M向其它趋化剂移动。此外OPN还能促进破
骨细胞和B细胞的趋化作用。
3.
细胞因子表达 OPN加强Th1并抑制Th2细胞因子的表达,它通过
LPS刺激直接诱导产生IL-12,抑制IL-10的表达。对IL-12的作用是依赖OPN
磷酸化。OPN可以使早期Th1细胞因子应答
极化。OPN还协同刺激人T
细胞增殖并促进人单个核细胞表达Th1细胞因子。关节内OPN作为产生IL-1、NO和PGE2的一种固有的抑制剂。
4.信号
转导 骨桥蛋白作为一种基质功能性非
胶原蛋白,主要通过两种机制发挥细胞
信号分子的作用。一是以分子内RGD基元与整合蛋白(integrin)家族分子结合;二是与细胞表面粘附性糖蛋白CD44以非RGD依赖方式结合。两种作用方式均通过激活细胞内特异性信号传导系统而介导细胞粘附、迁移和增殖。OPN与整合素受体结合后启动信号转导级联反应,促进基因表达的改变,并诱导NF-КB活性,OPN能诱导骨骼蛋白的粘附斑
激酶(FAK)和桩蛋白(Paxillin)的
磷酸化改变,还能影响胞内
ca(clo)2+浓度。
5.肿瘤发生和转移 基质来源的肿瘤,通常与OPN表达增强有关,OPN的过分表达与人
胃癌进展有关。OPN通过刺激
细胞信号
转导促进肿瘤恶性发展并能加强转移性细胞的生存。OPN作为前列腺癌的生长和发展的
旁分泌和自分泌的调节剂,重组OPN通过结合H因子,能使这些肿瘤细胞生存下来。
6.
矿化作用 OPN含有与细胞外基质的矿物质表面相互作用的酸性结构域。OPN能抑制培养的血管平滑肌细胞的钙化作用。
7.细胞免疫 OPN敲除后
小鼠存在Th1介导的
免疫缺陷病,角膜感染HSV-1后,OPN敲除的小鼠不能对HSV表现迟发超敏反应,也没有发生HSV伴随的
角膜炎,编码OPN基因与小鼠抗
立克次体基因(RicR)邻近,引起OPN早期缺陷的RicR
等位基因与立克次氏体感染有关,而高水平表达的OPN的小鼠对立克次氏体病有抵抗力,OPN在Th1
细胞介导的肉芽肿的形成中起重要作用。
8.其他 它能引起
单核细胞分化;加速血管生成;参与组织重建,如骨吸收、血管生成和创口愈合等;诱导尿激酶型纤溶酶原激活剂(UPA)的表达;抑制内皮细胞的凋亡;通过
LPS和IFN-γ抑制肾小管上皮细胞的诱导型NO合酶(iNOS)的活性;OPN是
小鼠M?的INOS的一种
负反馈调节剂。它还与动脉粥样硬化,自身免疫性疾病和其它炎症性疾病(肺纤维化)有关。
参与体内代谢
OPN与骨代谢
成骨
细胞、骨细胞及破骨细胞均可分泌OPN,在骨基质的矿化和吸收过程中有重要作用。OPN在
软骨内化骨、膜内化骨区域含量丰富,在编织骨中,于成骨细胞、骨细胞的胞浆中可以观察。OPN分子中有一富含
天门冬氨酸的区域,通过这一区域OPN可以与组织中的轻
磷灰石结合而发挥作用。在骨基质矿化开始后,成骨细胞中OPN-NA水平开始增高,在骨重建的过程中OPN的骨质线和骨膜板有较高的浓度,这意味着OPN对成骨细胞的翁附过程和矿化的中止过程起重要作用。OPN在骨重吸收的过程中也有重要的功能。在骨吸收的过程中,当破骨
细胞与骨接触时,在细胞与骨间隙间形成一个特殊的微结构,此结构是由破骨细胞膜皱折形成的指状结构与骨表面合围而成的空白区,它与细胞外环境隔离,其中酸性环境促使钙溶解和
磷酸盐基质产生。
OPN与心血管系统
OPN是血管平滑肌由收缩表型向合成表型转化的标志基因,又是血管细胞的主要粘附及趋化因子,还与动粥样硬化斑块的钙化密切相关。
免疫细胞介素21β和
肿瘤坏死因子2α均可显著诱导血管平滑肌细胞对OPN基因的表达。OPN在心血管特别是血管重塑过程中起重要调节作用,参与动脉粥样硬化和血管成形术再在狭窄的
细胞因子:PDGF、bFGF、EGF、TGFβ、TL21、AngⅡ均能刺激血管内皮
细胞和平滑肌细胞过度表达OPN。OPN能抑制动脉钙化的发生。
OPN与肿瘤
OPN有明显促进肿瘤恶化的倾向。它可看作是一种恶性肿瘤生长的
血清标志。OPN在许多组织中不同水平的表达与机体对感染和创伤的反应有关,OPN与实体瘤、动脉粥样硬化斑块、
肉瘤组织形成等病理过程相关联。OPN在肿瘤的转移过程中也发挥重要作用,也可以看作是肿瘤已发生转移的标志物,肿瘤转移病人血清中OPN水平明显升高。OPN能抑制NO的产生从而提高转移细胞的存活力。
OPN在
淋巴细胞,包括T细胞及NK细胞亚群,被非特异结合后不久即开始表达,另外OPN在对抗感染的非特异性免疫及自身免疫中起一定作用,其对巨噬
细胞有
化学诱导的作用,因而有人认为可以把其看作一种
细胞因子。OPN还可以与CD44相互作用,能引起CD44依赖的化学
趋化性增高,而CD44的变异型能与OPN的C端或N端结合,而不依赖于RGD序列
OPN广泛分布于消化系统,特别是与外界相同的腔道的上皮表面。经检测证实有OPN分布与表达的消化器官和组织有:胃,
小肠,
阑尾,大肠,
胆囊上皮,肝内
胆管,
胰腺,
唾液腺管和唾液腺粘液细胞。胃肠道肌内
神经丛的
神经节,肝脏的巨噬细胞也有OPN的表达。
在大鼠、
小鼠及人的肾脏均有OPN的表达,OPN是血管肾小管细胞和肾乳头表面细胞均可分泌OPN,在体外可抑制
草酸钙晶体的
成核,生长和聚集,正常人尿中OPN的浓度为6×10-8mol·L-1,足以抑制草酸钙结晶,其在尿中浓度可以反映尿抑制结石形成的能力。
OPN在炎症反应过程中的作用
OPN主要通过β1和β3整合素受体以及部分
免疫细胞表面的CD44受体对白细胞的黏附和迁移发挥调理作用。。OPN经凝血酶酶切以后,其N-末端片段能够与巨噬
细胞表面的CD44受体结合,对巨噬细胞具有趋化功能;而其C-末端片段则可与细胞表面的整合素受体αvβ1相互作用,介导巨噬细胞的黏附和迁移。OPN与T细胞表面整合素受体以及CD44受体的相互作用能够促进Th1的产生而抑制向Th2的分化,从而加强机体细胞免疫的功能而抑制
体液免疫反应的发生。在心肌细胞、血管内皮细胞和巨噬细胞等细胞中,OPN能够通过下调诱生型
一氧化氮合酶( inducibleNOS,iNOS)的表达,抑制炎症反应的发生。OPN在炎症反应过程中具有双向调节作用,只是在不同的环境中OPN的作用可能会表现出不同的侧重,如此可能更有助于控制炎症反应的强度,调节组织修复的进程。
OPN与组织修复
成体组织中创伤多通过痕组织进行修复。在肉芽组织中,绝大多数新生血管内皮细胞中都存在OPN mR-NA的高表达。OPN能够促进内皮细胞的增殖、迁移以及新生血管管形的发生。在缺血诱导的视网膜血管化的发病过程中,OPN能够通过介导血管内皮细胞与
细胞外基质的相互作用,加速血管内皮细胞的增殖,促进新生血管床的形成。中膜血管平滑肌细胞(VSMC)参与创伤愈合的进程,VSMC增殖以及细胞外基质堆积造成的血管壁肥厚以及血管重塑过程中血管壁的收缩是导致血管管腔狭窄的主要原因。在VSMC去分化过程中,OPN的表达明显加强,OPN通过与整合素受体αVβ3等的相互作用,调节VSMC的黏附和迁移。
总之,骨桥蛋白作为一种新的
细胞因子,在人体中发挥着重要的作用。越来越多的研究,证实着骨桥蛋白的重要性,相信以后还会发现更多它的神奇的作用,为人类疾病的研究和治疗做出贡献。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362