全国高中数学联合竞赛(Chinese High School Mathematics League)是中国高中数学学科的较高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛,是全国五项学科竞赛之一,由中国科学技术协会所属中国数学会、中国物理学会、中国化学会、中国计算机学会、中国动物学会和中国植物学会等六个学会主办。全国五项学科竞赛活动包括数学、物理、化学、生物和信息学竞赛,是得到教育部及各级教育主管部门支持的,在国内具有广泛影响的面向在校高中学生的课外活动。
1956年起,中国开始举办中学数学竞赛,在北京、
上海市、
福建省、
天津市、南京、
武汉市、
成都市等省市都开展了数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛。1979年,中国29个省、市、自治区都举办了中学数学竞赛。1981年,在
大连市召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年9月第二个星期日举行“全国高中数学联合竞赛”。
联盟简介
大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年9月中旬的第一个星期日举行“全国高中数学联合竞赛”。
竞赛分为一试和二试,在这项竞赛中取得优异成绩的全国约400名学生有资格参加由
中国数学会奥林匹克委员会主办的“
中国数学奥林匹克(CMO)暨全国中学生数学冬令营”(每年11月)。各省的参赛名额由4人到30人不等,视该省当年的联赛考试成绩而定,且对于承办方省份有一定额外的优惠。
为了促进拔尖人才的尽快成长,教育部规定:在高中阶段获得全国数学联赛省、市、自治区赛区
一等奖者便获得保送
重点大学的资格,对于没有保送者在高考中加分,加分情况根据各省市政策而定,有些省、市、自治区保留了竞赛获奖者高考加5分到20分不等,而部分省级行政区已经取消了竞赛加分。对二、
三等奖获得者,各省、市、自治区又出台了不同的政策,其中包括
自主招生资格等优惠录取政策。为严格标准,中国数学会每年限定一等奖名额1000名左右,并划分到各省、市、自治区。各省、市、自治区在上报一等奖候选人名单的同时,还要交上他们的试卷,最终由中国数学会对其试卷审核后确定获奖名单。
经历
在
华罗庚、
苏步青等老一辈数学家的倡导下,从1956年起,开始举办中学数学竞赛,在北京、
上海市、
福建省、
天津市、南京、
武汉市、
成都市等省市都开展了数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛。
1979年,中国大陆上的29个省、市、自治区都举办了中学数学竞赛。
1980年,在
大连市召开的第一届全国数学普及工作会议上确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年10月中旬的第一个星期日举行“全国高中数学联赛”。
意义
全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至
国际数学奥林匹克竞赛(IMO)。并且通过竞赛的方式,培养中学生对于数学的兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。
比赛规则
《高中数学竞赛大纲(修订稿)》
中国数学会普及工作委员会制定
在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年中国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过
课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,
课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
试题模式
自2019年起,全国高中数学联赛试题新规则如下:
联赛分为一试、加试(即俗称的“二试”)。各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。
一试和加试均在每年9月中旬的第一个周日举行。
一试考试时间为8:00—9:20,共80分钟,包括8道填空题(每题8分)和3道解答题(分别为16分、20分、20分),满分120分。
二试考试时间为9:40—12:30,共170分钟,包括4道解答题,涉及平面几何、
代数、
数论、组合四个方面。前两题每题40分,后两题每题50分,满分180分。
依据考试结果评选出各省级赛区级一、二、
三等奖。其中
一等奖由各省负责阅卷评分,然后将一等奖的考卷寄送到主办方(当年的主办方),由主办方复评,最终由主管单位(
中国科学技术协会)负责最终的评定并公布。二、三等奖由各个省自己决定。
各省、市、自治区赛区一等奖排名靠前的同学可参加
中国数学奥林匹克(CMO)。
一试
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试
1、平面几何
基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要的
极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
在一试大纲的基础上另外要求的内容:
三倍角公式,三角形的一些简单的
恒等式,三角
不等式。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,
柯西不等式,
排序不等式及应用。
复数的指数形式,
欧拉恒等式,棣莫佛定理,
单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(
多项式)根的个数,根与系数的关系,实系数方程虚根成对
定理。
简单的
初等数论问题,除初中大纲中所包括的内容外,还应包括
无穷递降法,同余,欧几里得除法,非负最小完全剩余类,
高斯函数,
费马小定理,
欧拉函数,孙子定理,格点及其性质。
多面角,多面角的性质。三面角、直三面角的基本性质。
体积证法。
4、平面解析几何
三角形的面积公式。
圆的幂和根轴。
5、其它
极端原理。
集合的划分。
覆盖。
赛瓦定理及其逆定理。
竞赛大纲
(修订讨论稿)
中国数学会普及工作委员会制定
(2006年8月)
从1981年中国数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指导下,全国数学竞赛活动方兴未艾,每年一次的数学竞赛吸引了上百万学生参加。1985年中国步入
国际数学奥林匹克竞赛殿堂,加强了数学课外教育的国际交流,20年来中国已身于IMO强国之列。数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。
为了使全国数学竞赛活动持久、健康、逐步深入地开展,中国数学会普及工作委员会于1994年制定了《高中数学竞赛大纲》,这份大纲的制定对高中数学竞赛活动的开展起到了很好的指导性作用,中国高中数学竞赛活动日趋规范化和
正规化。
同时,随着国内外数学竞赛活动的发展,对竞赛活动所涉及的知识、思想和方法等方面也有了一些新的要求,原来的《高中数学竞赛大纲》已经不能适应新形势的发展和要求。经过广泛征求意见和多次讨论, 对《高中数学竞赛大纲》进行了修订。
本大纲是在《全日制普通高级中学数学教学大纲》的精神和基础上制定的。《全日制普通高级中学数学教学大纲》指出:“要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长;……在课内外教学中宜从学生的实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。”
学生的数学学习活动应当是一个生动活泼、富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导阅读自学、自主探索、动手实践、合作交流等学习数学的方式,这些方式有助于发挥学生学习的主动性。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导。教师应引导学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们设置一些选学内容,提供足够的材料,指导他们阅读,发展他们的数学才能。
教育部2000年《全日制普通高级中学数学教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容,在理解程度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。“课堂教学为主,
课外活动为辅”是必须遵循的原则。因此本大纲所列的课外讲授内容必须充分考虑学生的实际情况,使不同程度的学生在数学上得到相应的发展,并且要贯彻“少而精”的原则。
知识范围
全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》。
全国高中数学联赛(加试)在知识方面有所扩展,适当增加一些教学大纲之外的内容,所增加内容是:
1.平面几何
几何中的变换:对称、平移、旋转;
圆的幂和根轴
三角公式,
三角恒等式,三角
方程,三角不等式,
反三角函数递归,递归
数列及其性质,一阶、二阶线性常系数递归数列的通项公式;
复数及其指数形式、三角形式,
欧拉恒等式,棣莫弗定理,
单位根;
多项式的除法
定理、
因式分解定理,多项式的
相等,整系数多项式的有理根*,多项式的
插值公式*;
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理;
同余,
欧几里得除法,裴蜀定理,完全剩余系,不定方程和
方程组,
高斯函数[x],
费马小定理,格点及其性质,
无穷递降法*,欧拉定理*,
中国剩余定理*。
4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式;
极端原理;
集合的划分;
覆盖;
有*号的内容加试中暂不考,但在冬令营中可能考。
获奖名单